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In this paper, size-dependent effects on the vibration behavior of Timoshenko microbeams under 
pre-stress loading embedded in an elastic foundation, using modified strain gradient theory 
(MSGT) and surface stress effects, were studied. To consider the surface stress effects, the Gurtin–
Murdoch continuum mechanical approach was employed. Using Hamilton’s principle, the govern-
ing equations of motion and boundary conditions were obtained and solved numerically using 
the differential quadrature method (DQM). The effects of pre-stress loading, surface residual 
stress, surface mass density, Young’s modulus applied to the surface layer, three material length 
scale parameters, and the elastic foundation coefficients were investigated. For higher aspect 
ratios, this study found that the effect of the pre-stress loading was negligible for higher modes. 
Considering size-dependent effects led to increase the stiffness of the matrix and enhance the 
dimensionless natural frequencies of the Timoshenko microbeam. The MSGT results were higher 
than those found using other theories. In addition, this research discovered that there were negli-
gible surface stress effects with each of the three material length scale parameters. 
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1. Introduction 

Nano technology is one of the most powerful 
technologies that can produce many materials and 
devices across a range of applications, such as elec-
tronics, biomaterials, medicine, and energy produc-
tion [1-3]. Vibration analysis of composite beams 
has been a research topic in many engineering fields 
because vibration plays an important role in the 
design of turbine blades, helicopter blades, propel-
ler blades, drill bits, and fluted cutters. In practice, 
these structures are typically modeled as either Eu-
ler or Timoshenko beams. The design of micro- and 
nano-electro-mechanical systems (MEMS/NEMS) 
requires widespread use of micro-rods and mi-
crobeams with different complex behaviors. Cur-
rently, micro-composite beams are employed in mi-
cro-turbo machines, ultrasonic piezoelectric micro-
motor designs, and medical micro devices. 

Recently, many researchers have investigated 
the mechanical behaviors of micro- and nano-scale 
materials using beam, plate, and shell theories. 
Ghorbanpour Arana et al. [4] analyzed the pulsating 
fluid-induced dynamic instability of double-walled 
carbon nano-tubes (DWCNTs), based on a sinusoidal 
strain gradient theory using the differential quadra-
ture method (DQM) and the Bolotin method. Their 
results depicted that the imposed magnetic field 
was an effective controlling parameter for dynamic 
instability of visco-DWCNTs. In another work, Ghor-
banpour Arani et al. [5] presented the nonlinear 
vibration of coupled nano- and microstructures 
conveying fluid flow based on a Timoshenko beam 
model under a two-dimensional magnetic field. 
They expressed that the magnetic field played an 
important role in the stability of the carbon nano-
tubes (CNTs) and controls the stability of the 
nanosystem.  
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Simsek [6] studied the free vibration analysis of 
nanobeams with various boundary conditions, 
based on the nonlocal elasticity theory for large am-
plitude. In that research, the effect of nonlocal pa-
rameters on the nonlinear frequency ratio was ex-
amined. Their results showed that the nonlocal ef-
fects should be considered in the analysis of the me-
chanical behavior of nanostructures. Sahmani and 
Bahrami [7] analyzed the dynamic stability of mi-
crobeams subjected to piezoelectric voltage, using 
the strain gradient theory (SGT). In their results, for 
a special value of applied piezoelectric voltage, in-
creasing the dimensionless length scale parameter 
decreased the difference between stability respons-
es predicted by the classical and non-classical beam 
models. In addition, Mohammadimehr and Golzari 
[8] investigated the elliptic phenomenon effect of 
cross-sections on the torsional buckling of a nano-
composite beam reinforced by a single-walled car-
bon nanotube (SWCNT). With an increase in the ma-
trix thickness, the tangential and longitudinal 
strains of SWCNT decreased, and the opposite effect 
occurred for the interface stress and the dimension-
less stress of the outer surface.  

Alternately, Mohammadimehr and Rahmati [9] 
considered the small-scale effects on electro-
thermo-mechanical vibration analysis of a single-
walled boron nitride nanorod under electric excita-
tion. They represented that the natural frequency 
decreased with an increase in the small-scale effects 
or aspect ratios. On the other hand, the small-scale 
effects were significant for lower aspect ratios and 
higher natural frequencies. Atabakhshian et al. [10] 
employed vibration of a smart coupled electro-
thermal nanobeam system with an internal flow, 
based on nonlocal elasticity theory, while Ansari et 
al. [11] derived free vibration analysis from the 
evaluation of single and double-walled carbon nano-
tubes based on nonlocal elastic shell models. They 
concluded that the small-scale effects in the non-
local model made nanotubes more flexible. Akgoz 
and Civalek [12] studied higher-order shear defor-
mation in microbeam models, based on the strain 
gradient elasticity theory. Their results showed that 
microbeams derived from the non-classical theories, 
specifically modified strain gradient theory (MSGT), 
were stiffer than those based on the classical theory 
(CT).  

Asgharifard Sharabiani and Haeri Yazdi [13] il-
lustrated the nonlinear free vibrations for function-
ally graded (FG) nanobeams, including their surface 
effects. The results showed that the surface effects 
at higher volume fraction indices were either less or 
more dominant, in small and large amplitude ratios, 
respectively. Ke et al. [14] investigated the nonline-
ar vibrations of piezoelectric nanobeams based on 
the nonlocal and the Timoshenko beam theories. 

Their results demonstrated that a change in the ex-
ternal electric voltage from a positive value to a 
negative value led to a decrease in the nonlinear 
frequency ratio. Ansari et al. [15] analyzed the bend-
ing, buckling, and free vibration responses of FG 
Timoshenko microbeams, and they observed that 
the critical buckling loads and natural frequencies 
predicted by the beam models, based on MSGT and 
CT, provided the maximum and minimum values, 
respectively. Tounsi et al. [16] illustrated size-
dependent bending and vibration analysis of FG mi-
crobeams, based on MCST and neutral surface posi-
tions. They represented that the inclusion of the 
couple stress effect makes a microbeam stiffer and 
decreased the vertical displacement and increased 
the natural frequency.  

Alternately, Nazemnezhad et al. [17] employed 
an analytical study on the nonlinear free vibration of 
nanoscale beams incorporating surface density ef-
fects. They observed that the effect of the surface 
density on the variation of the natural frequency of 
the nanobeam versus the thickness ratio decreases 
consistently with the increase of the mode number. 
Nejat Pishkenari et al. [18] examined the surface 
elasticity and size effects on the vibrational behavior 
of silicon nanoresonators. They developed a contin-
uum model for nanobeam vibrations that was capa-
ble of predicting the results of molecular dynamics 
(MD) simulations with considerably lower computa-
tional effort. Yue et al. [19] proposed a microscale 
Timoshenko beam model for piezoelectricity using 
flexoelectricity and surface effects. Their results 
observed that the change of surface properties not 
only directly affected the static bending but also 
significantly changed the natural frequency of the 
beam. Preethi et al. [20] presented surface and non-
local effects of the nonlinear analysis of Timoshenko 
beams using Eringen’s nonlocal theory and the Gur-
tin-Murdoch approach, where the nonlocal parame-
ters and the positive surface parameters’ values de-
creased the stiffness of the beam and resulted in 
larger deflections and lower frequencies.  

In this research, a Timoshenko microbeam mod-
el, based on the modified strain gradient theory 
(MSGT) and surface stress effects subjected to pre-
stress loading, is presented. The MSGT and surface 
stress effects were considered together in this study 
because both of them affect the structure at the mi-
croscale. Despite the fact that the surface and small 
scale effects have been investigated individually in 
some papers, the novelty of this study lies in the 
evaluation of size-dependent effects, including three 
material length scale parameters, and the surface 
residual stress based on strain gradient, and the 
surface stress elasticity effects on the dimensionless 
natural frequency of Timoshenko microbeams, sub-
jected to pre-stress loading and considered simulta-
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neously at a microscale. Moreover, the size-
dependent effects increased the dimensionless nat-
ural frequency due to increasing flexural rigidity, 
which then enhanced the stability of the microstruc-
tures. The governing equations of motion were ob-
tained using Hamilton’s principle and energy meth-
od. The equations were solved using the differential 
quadrature method (DQM). 

2. The Governing Equations of Timo-
shenko microbeams 

A schematic view of a straight Timoshenko mi-
crobeam model based on surface layers, an elastic 
medium, and pre-stress load is shown in Figure 1. 
The displacement fields for this model can be stated 
as [21] 

0 0
( ,z, ) ( , ) ( , )u x t u x t z x t   (1) 

v( ,z,t) 0x   (2) 

0
( ,z,t) ( , )w x w x t  (3) 

where
0

u and
0

w are axial and transverse displace-

ments for the neutral axis, respectively, and
0

 is the 

rotational transverse normal angle about the x-axis. 

The components of normal ( xx ) and shear (  xz ) 

strains, using Eqs. (1), (2), and (3), are considered as 
follows: 

0 0

xx

u
z

x x




 

 

 , (4) 

0

0xz

w

x
 




 . 

(5) 

 
Figure 1. A schematic view of a Timoshenko microbeam model 

with a surface layer, elastic medium, and pre-stress load. 

 
 
 
 
 
 
 

The strain energy for the linear isotropic elastic 
material, based on MSGT, is considered as follows 
[21,22]: 

(1) (1)1
( )

2 ij ij ijk ijki ii j ij
U m dVp   


   

(6) 

where
ij

 and
ij
 are the Cauchy stress tensor and 

the strain tensor, respectively. The expressions i
  

and
ij

 denote the dilatation gradient tensor, the 

deviatoric stretch gradient tensor, and the symmet-
ric rotation gradient tensor, respectively, which are 
defined as the following forms [23,24] 
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(9) 

, ,
( )

1

2ij i j j i
u u    (10) 

,

1

2ij jkl l ki
e u   (11) 

where mm
and

iu are the dilatation strain and the 

displacement vector, respectively, according to 

Akgöz and Civalek [25]. The Knocker symbol is  ij , 

and the permutation symbol is ijke : 

1

1

0

fora forwared permutation of ijk

fora backwared permutation of ijk

if i,j,k is equal
ijk

e





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




 
(12) 

The constitutive equations for linear, elastic, and 
isotropic materials are given by the following forms 
[25] 
     2

ij ij mm ij
 (13) 

2

0
2

i i
p l   (14) 

(1) (1)2

1
2

ijk ijk
l   (15) 

2

2
2

ij ij
lm   (16) 
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where  ij is the deviatoric strain, which can be writ-

ten as follows [25]: 

1

3ij ij mm ij
       (17) 

where
0l ,

1l , and 
2l denote three additional inde-

pendent material length scale parameters associat-
ed with the dilatation gradient tensor, deviatoric 
stretch gradient tensor, and symmetric rotation 
gradient tensor, respectively. In addition, the pa-
rameters λ and μ are the Lame coefficients which 
are given as [26,27] 

(1 )(1 2 )

E


 


 
, 

2(1 )

E






 (18) 

where E and denote Young’s modulus and Pois-

son’s ratio, respectively.  
Using Eqs. (3), (4), and (5), the following equa-

tions are given by 
2 2

0 02 2x
u z

x x
 

 

 

  (19) 

0z x
 


 


 (20) 

Using Eqs. (3), (4), and (5), the nonzero compo-

nents of the deviatoric stretch gradient tensor
(1)ijk

can be derived as follows: 
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(21) 

Substituting Eqs. (19)–(21) into Eq. (11) yields 
the following form: 

2

0 0

2

1
)(

4xy yx

w

xx


 

 
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(22) 

Using Eqs. (15) and (21), the higher order 
stresses for MSGT are obtained as the following 
forms:  
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(23) 

Using Eqs. (14), (16), (19), (20) and (22), we have  
2
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2 2
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(24) 

The non-zero stresses
ij are obtained as follows: 

0 0

0

0

( 2 )

)( )(

xx

x sz

u
z

x x
w

x
k


  
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In Eq. (25),
sk denotes the shear correction factor 

which depends on the shape of microbeam cross-
section.  

Because of a high surface-to-volume ratio, the 
surface stress effect plays an important role with 
micro- and nanoscale materials. For this purpose, 
the constitutive equation of the Gurtin–Murdoch 
continuum mechanics approach is considered as 
follows [28]: 
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where s
is the residual surface stress under un-

strained condition, and s
and s

are the surface 

Lame constants. The components of normal and 
shear surface stress can be written as follows: 
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The classical beam theory does not satisfy our 
model. For solving this problem, it is assumed that 
the stress component zz

varies linearly through the 

beam thickness and satisfies the balance conditions 
on the surfaces. Therefore, zz

can be written as 

[28] 
2 2
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2 2
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2 2
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(28) 

 

Using Eq. (27),  zz
 can be written as 
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The normal and shear components, considering 
bulk and surface effects and using Eq. (29), can be 
written as 
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(30) 

 is the total potential energy that includes the 
strain energy, kinetic energy, and work done by the 
external loads, which can written as [4] 

(K )
tot tot tot

U    (31) 
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and where U , sU , K and sK are the strain and 

kinematic energies for bulk and surface effects, 

respectively. Moreover,  and elasticV are the work 

done by the external forces, including the pre-stress 
load and the elastic foundation, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 

Using Hamilton’s principle and a variational 
method for Timoshenko microbeam model, based 
on strain gradient theory and the surface stress ef-
fects embedded in an elastic medium subjected to 
pre-stress loading , yields the following equation 
[4]: 

0

[ ] 0
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The surface strain energy is obtained as 
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Using the presented equations, the strain energy 
for bulk and surface effects are explained in Appen-
dix A with details. Using Eqs. (14)–(16), the kinetic 
energy of the Timoshenko microbeam model for 
bulk and surface effects can be written as 
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The work done by external forces, including pre-
stress load and elastic foundation, can be written as 
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where 0 x is the pre-stress load, and
wk and 

PG are 

Winkler’s spring and Pasternak’s shear modulli of 
elastic foundation, respectively. 
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By substituting Eqs. (A-1), (A-2), (35) and (36) 
into Eq. (33), one can obtain the governing equa-
tions of motion and boundary conditions as follows: 
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For boundary conditions 
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(39) 

The dimensionless geometric, mechanical, and 
surface residual stress, surface mass density, 
Young’s modulus of surface layer, and three material 
length scale parameters can be defined as follows 
[28]: 
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(40) 

To use the differential quadrature (DQ) method, 
first we should convert Eqs. (37) and (38) into di-
mensionless equations. Thus, substituting Eq. (40) 
into Eqs. (37) and (38) yields the Eqs. (41a) and 
(41b).  
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The dimensionless simply supported (SS) 
boundary conditions for the microbeam model are 
considered as follows: 
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3. Using the DQ method to solve the Timo-
shenko microbeam model 

The (DQ) method was used to solve Eq. (41) and 
the associated boundary conditions in Eq. (42) to 
determine the free vibration frequencies of the 
beam. The basic concept of the DQM was defined as 
the derivative of a function at a given point that can 
be approximated as a linear sum of a weighted func-
tion at all sample points [29,30]. Using this approx-
imation, the differential equations are then reduced 
to a set of algebraic equations. This approach is con-
venient for solving problems governed by fourth- or 
higher-order differential equations. 

 According to this method, the mth order deriva-
tive of the function f(x) with respect to x at a grid 
point xi, is approximated by a linear sum of all the 
functional values in the whole domain as follows 
[22]: 
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where xi is the location of ith sample point in the 

domain; N is the number of sampling points; (x )
j

f  

is the functional value at point xi, 
( )m

ij
C

 
is the 

weighting coefficient of the mth order differentiation 
attached to these functional values. To avoid ill-
conditioning, the Lagrange interpolation basis func-
tions are used as the following form [22]: 
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(44) 

To determine the unequally-spaced positions of the 
grid points, the Chebyshev–Gauss–Lobatto polyno-
mials were employed as follows [22]: 
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The first order weighting matrix can be obtained 
completely from Eq. (44). Higher-order coefficient 
matrices can be obtained from the first-order 
weighting matrix as follows [22]: 
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Then, substituting Eqs. (44) and (46) into Eqs. (41a) 
and (42) obtained the following equations of motion 
using the DQ method  
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For (SS) boundary conditions, we have: 
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The general solutions of motion equations are 
considered as 
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where 10

110

I
L

A
   is the dimensionless natural fre-

quency. Ω is the fundamental natural frequency, 
and ρ denotes the density of microbeam.  

The stiffness and mass matrices for the Timo-
shenko microbeam, using strain gradient theory and 
surface stress effects under pre-stress loading, can 
be written as 
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where    K , M are the stiffness and mass matrices 

and the subscripts b and d stand for the boundary 
and domain points, respectively. By solving Eq. (50), 
the dimensionless natural frequencies for and 

their associated vibration mode shapes can be ex-
tracted. 
 

4. Numerical Results and Discussion 
 
The mechanical and geometric properties of a 

Timoshenko microbeam is considered as [28,31] 
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The material length scale parameter is crucial for 
the successful application of the MSGT. Dehrouyeh-
Semnani and Nikkhah-Bahrami [32] presented an 
in-depth discussion on how to determine this pa-
rameter numerically, and they compared the nu-
merical results obtained to those obtained by exper-
imental testing [32]. They showed the bending rigid-
ity of an epoxy micro-cantilever versus thickness for 
a modified couple stress model (MCST), using 

17.6cl l m  , and the experimental data reported 

by Lam et al. and found that the results based on the 
constitutive beam model validated the experimental 
data, while the Euler-Bernoulli beam model overes-
timated the bending rigidity of the micro-cantilever. 
In addition, they depicted that the material length 
scale parameter of epoxy-based materials on the 
Euler-Bernoulli beam model equals to 

12.45EBl l m  . According to the results of 

Dehrouyeh-Semnani and Nikkhah-Bahrami, the Eu-
ler-Bernoulli beam model validated the experi-
mental data very well, but the constitutive beam 
model underestimated the bending rigidity of the 
epoxy micro-cantilever. Therefore, in this work, we 
used the material length scale parameter equal to 
17.6 m . 

Table 1 gives the dimensionless natural frequen-
cies for the Timoshenko microbeam under various 
boundary conditions. An excellent agreement was 
found between the present results and the analytical 
solutions. 

The results, obtained by the present work, are 
compared with the reported results by Ansari et al. 
[33] in Figure 2, where they demonstrate good 
agreement each other. In addition, the trend of the 
results was the same. On the other hand, increasing 
the aspect ratio (L/h) reduced the dimensionless 
natural frequency. Moreover, the stiffness of the 
Timoshenko microbeam decreased with increasing 
the aspect ratio. 
 
Table 1. Comparison of dimensionless natural frequencies with 

various thicknesses for different boundary conditions. 

 

Thick
ness 
(nm) 

S-S S-C C-C 

Ansari et al. [28] 
h=1 

0.1830 0.2148 0.2524 
Present work 0.1863 0.2169 0.2553 
Ansari et al. [28] 

h=5 
0.1255 0.1643 0.2117 

Present work 0.1258 0.1652 0.2120 

 

 
Figure 2. The dimensionless natural frequency versus aspect 

ratio. 

 
Table 2 shows the first three dimensionless nat-

ural frequencies of the Timoshenko microbeam 
model for the different values of aspect ratio            

( 1


L

h
), and surface residual stress (  s ). As shown 

in Table 2, by increasing the aspect ratio, the value 
of the first three dimensionless natural frequencies 
decreases, and the opposite occurs for the surface 
residual stress.  

The latter subject has been illustrated for dimen-
sionless fundamental natural frequencies in Figure 
3. Considering the surface residual stress, the Timo-
shenko beam at a microscale becomes stiffer, but 
the effect of this parameter on the dimensionless 
natural frequency is not noticeable. Therefore, sur-
face residual stress can be ignored in the results.  
 
Table 2. First, second, and third dimensionless natural frequen-
cies of a Timoshenko microbeam model for the different values 

of 1


L

h
 and 

s  for 0 1 2( 1 )  l l l m . 

1




L

h
 

1 2  3   

10 3.6763 7.3545 11.0340 
90
 

  
 

s

N

m
  

15 3.6387 7.2933 10.9432 

20 3.6208 7.2618 10.8893 

10 3.6762 7.3543 11.0336 
0
 

  
 

s

N

m
 15 3.6386 7.2931 10.9429 

20 3.6207 7.2616 10.8891 

10 3.6761 7.3540 11.0333 
90
 

   
 

s

N

m
  

15 3.6385 7.2929 10.9426 

20 3.6207 7.2614 10.8888 
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Figure 3. The dimensionless fundamental natural frequency 

versus aspect ratio for different values of
s 0 1 2( 1 )  l l l m  

 
Tables 3 and 4 depict the first three dimension-

less natural frequencies of the Timoshenko mi-
crobeam model for the values of the aspect ratio       

( 1




L

h
), surface mass density ( s ), and Young’s 

modulus of surface layer ( 2 s s ), respectively. By 

increasing of the 2 s s , the value of the first three 

dimensionless natural frequencies increases and 
vice versa for surface mass density. A change in

2 s s and s led to increase stiffness and mass of 

the micro structure, respectively. Moreover, the re-
sults, shown in Figures 4 and 5, are similar to those 
shown in Tables 3 and 4. Furthermore, Figures 4 

and 5 demonstrate that the effect of s  on the di-

mensionless natural frequency is more than   
2 s s . However, the effect of 2 s s  on the di-

mensionless natural frequency is not noticeable, and 
it can be ignored in the results. 
 

Table 3. First, second, and third dimensionless natural fre-
quencies of the Timoshenko microbeam model for the differ-

ent values of 1




L

h

and s
 for 0 1 2( 1 )  l l l m  

1




L

h

 
1 2  3   

10 3.6764 7.3546 11.0342 
2

0( )s

kg

m
  
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20 3.6209 7.2620 10.8896 
10 3.6760 7.3538 11.0329 

2
7 7( ) s

kg
e

m


 
15 3.6383 7.2927 10.9422 
20 3.6205 7.2611 10.8884 
10 3.6722 7.3462 11.0213 

2
7 6( ) s

kg
e

m


 
15 3.6346 7.2852 10.9309 
20 3.6169 7.2538 10.8772 

 

 
Figure 4. The dimensionless fundamental natural frequency 

versus aspect ratio for different values of s 0 1 2( 1 )  l l l m

. 

 
Figure 5. The dimensionless fundamental natural frequency 

versus aspect ratio for different values of 2 s s

0 1 2( 1 )  l l l m  
 
Table 4. First, second, and third dimensionless natural frequen-

cies of a Timoshenko microbeam model for the different values of

1




L

h
and 2 s s for 0 1 2( 1 )  l l l m  

1




L

h

 
1 2  3   

10 3.6761 7.3541 11.0333 
2

2 300
 

    
 

s s

N

m
 

 
15 3.6385 7.2930 10.9427 
20 3.6207 7.2615 10.8889 
10 3.6762 7.3543 11.0337 

2
2 0

 
   

 
s s

N

m
 

 
15 3.6386 7.2931 10.9429 
20 3.6207 7.2616 10.8891 
10 3.6763 7.3544 11.0340 

2
2 300

 
    

 
s s

N

m
 

 
15 3.6386 7.2932 10.9431 
20 3.6208 7.2617 10.8892 
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Figures 6a and 6b show the influence of pre-
stress load on the dimensionless first and third nat-
ural frequencies versus aspect ratio, respectively. 
These results demonstrated that the effect of pre-
stress load on the greater mode is negligible for 
higher aspect ratios, and this effect was similar to 
the lower aspect ratios for all modes. Clearly, the 
stiffness of microbeam increased at lower aspect 
ratios. In this figure, the effect of the positive pre-
stress load on the natural frequency was higher than 
that of the negative pre-stress load. Consequently, 
positive and negative pre-stress loads led to in-
crease and decrease stiffness of the Timoshenko 
microbeam, respectively. These results are the same 
for dimensionless natural frequencies. 

 

 
(a) 

 
(b) 

Figure 6. The influence of pre-stress load on the dimensionless 
first (a) and third (b) natural frequencies versus aspect ratios

( 0.001, 0 , 0.001)   N N N . 

 
 
 
 
 
 

To consider the size-dependent effects (l denotes 
the material length scale parameter), the parameter 
at a microscale is taken into account, and it is non-
zero for MSGT ( 0 1 2  l l l l ) or MCST ( 0 1 20,  l l l l ), 

while at a macro scale, it is zero for CT                           
( 0 1 2 0l l l l    ).  

Figures 7a and 7b are plotted to illustrate the in-
fluence of various material length scale theories in-
cluding modified strain gradient (MSGT)                      
( 0 1 2  l l l l ), modified couple stress (MCST)               

( 0 1 20,  l l l l ), and classical theories (CT)                    

( 0 1 2 0  l l l ) on the dimensionless first and third 

natural frequencies versus 
h

l
, respectively.  

 

 
(a) 

 
(b) 

Figure 7. The influence of various material length scale theories 
on the dimensionless (a) first and (b) third natural frequencies 

versus h/l.  
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The effect of the material length scale parame-
ters on the dimensionless natural frequencies for 
MSGT was higher than that of the other states, such 
as MCST and CT. This indicates that considering 
three material length scale parameters

0 1 2( )l l l l    led to increase stiffness of the Timo-

shenko microbeam model, and therefore the dimen-
sionless natural frequencies for MSGT enhanced. 

Figures 8 and 9 present the influence of trans-
verse and shear constants of the elastic foundation 
on the dimensionless fundamental natural frequen-
cies with different values of aspect ratios. The di-
mensionless natural frequency increased with an 
increase in the transverse and shear constants of the 
elastic foundation, while the elastic foundation in-
creased stiffness of the microstructure.  

 

 
Figure 8. The influence of the transverse constant of the elastic 
foundation on the dimensionless fundamental natural frequen-

cies with different values of aspect ratios
1




L

h
, ( 0)PG . 

 
Figure 9. The influence of shear constant of elastic foundation on 
the dimensionless fundamental natural frequencies with different 

values of aspect ratios
1




L

h
, ( 0)wk . 

 

Moreover, increasing the transverse and shear 
constants of the elastic foundation were directly 
related to the stiffness of the Timoshenko mi-
crobeam and the dimensionless natural frequency. 

 
5. Conclusions 

Size-dependent effects on the free vibration 
analysis of the Timoshenko microbeam model, 
based on MSGT and surface stress effects subjected 
to pre-stress loading embedded in an elastic medi-
um, were investigated. The Gurtin–Murdoch contin-
uum mechanical approach was considered, and the 
set of governing equations were derived using a 
variational method and solved using DQM. Effects of 
pre-stress load, surface residual stress, surface mass 
density, Young’s modulus of surface layer, material 
length scale parameters, and elastic foundation coef-
ficients were studied.  

The results of this article can be listed as follows: 
 By increasing the aspect ratio, the values of 

natural frequencies decreased while the op-
posite occurred for surface residual stress. 
In addition, when increasing the value of

2 s s , the value of the natural frequencies 

increased, while the surface mass density 
decreased. Variations in 2 s s  and s  led 

to increase stiffness and mass matrices for 
the micro structures, respectively. The nu-
merical results showed that the effect of sur-
face residual stress was more than the sur-
face mass density or Young’s modulus of the 
surface layer. 

 The effect of pre-stress loading in higher 
modes was negligible for higher aspect rati-
os, and this effect was similar to lower as-
pect ratios across all modes. 

 The effect of the three material length scale 
parameters on the natural frequencies for 
MSGT was higher than that of the other the-
ories. Application of each of the three mate-
rial length scale parameters 0 1 2( , , 0)l l l , in-

creased the natural frequencies for MSGT, 
which was due to the increasing stiffness of 
the Timoshenko microbeam model. 

 Natural frequencies increased with an in-
crease in the transverse and shear constants 
of the elastic foundation. Consequently, ap-
plying the elastic foundation values led to 
increase stiffness of the Timoshenko mi-
crobeam model. 

 Comparison between the material length 
scale parameters and the surface effect con-
firmed that natural frequencies are more af-
fected by the material length scale parame-
ters than surface effects. 
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Appendix 

The strain energies for bulk and surface effects 
are written as follows: 
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