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In this paper, the nonlinear free vibration of fiber-reinforced lamina micro-switches is investi-

gated, and a sensitivity analysis (SA) is given. The switches are modeled as solid rectangular 

beams consisting of an isotropic matrix with transversely and longitudinally isotropic reinforce-

ments, incorporating a higher order Hamiltonian approach. An SA of the proposed micro-switch 

is presented by calculating the numerical derivatives of the presented nonlinear model with re-

spect to the design parameters. The SA of geometric parameters, such as dimensionless length, 

thickness, initial gap, applied voltage, axial load, and effective modules of the system, was con-

ducted using the Sobol method. It was found that the natural frequency varied when changes 

were made to the proposed parameters; this finding can be used to optimize future designs.  
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1. Introduction    

Micro-electro-mechanical systems (MEMSs) are 
used in fields such as aerospace, optical, and biomed-
ical engineering, particularly in applications such as 
micro-switches, transistors, accelerometers, pres-
sure sensors, micro-mirrors, micro-pumps, micro-
grippers, and bio-MEMSs [1-4]. MEMSs are merged 
devices that connect electrical and mechanical com-
ponents. Studying the dynamic and static behaviors 
of atomic force microscope (AFM) cantilevers and 
controlling the vibration of these cantilevers are ex-
amples of challenges that involve both electrical and 
mechanical components [5-8]. Ghalambaz et al. [9] 
studied the effects of Van der Waals attraction, Casi-
mir force, small size stretching, fringing field, mid-
plane stretching, and axial load on the oscillation fre-
quency of resonators. 

The inherent intricacy of the nonlinear vibration 
of MEMSs makes numerical solutions a better choice 
than analytical ones. The shooting method [10], the 
differential quadrature method [11], the homotopy 
analysis method (HAM) [12], the variational ap-
proach (VA) [13], the max–min approach (MMA) [14, 
15], and the energy balance method (EBM) [16] are 
some of the numerical and approximate analytical 
approaches than can be addressed. Ganji et al. [17] 
applied the EBM and an amplitude frequency formu-
lation (AFF) to govern the approximate analytical so-
lution for the motion of two mechanical oscillators. 
They showed that in comparison with a fourth-order 
Runge-Kutta method, their solution is intuitive and 
useful for solving strongly nonlinear oscillators. 
When Ganji and Azimi [18] used both the MMA and 
an AFF to derive an approximate analytical solution 
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for the free vibrating motion of nonlinear, conserva-
tive, single-degree-of-freedom systems, they con-
cluded that both methods had the same results. Both 
of these methods are convenient for solving nonlin-
ear equations and can also be utilized for a wide 
range of time and boundary conditions for nonlinear 
oscillators. 

Yildirim, Saadatnia et al. [19] applied the Hamil-
tonian approach to obtain the natural frequency of a 
Duffing oscillator; the obtained results were in com-
plete agreement with the approximate frequencies 
and the exact solution. Askari [20] utilized a higher 
order Hamiltonian approach to elicit approximate 
solutions for the model of buckling in a column and 
mass-spring system. Khan and Akbarzade [21] used 
a VA, a Hamiltonian approach, and an AFF to analyze 
a nonlinear oscillator equation in a double-sided 
clamped micro-beam-based electromechanical reso-
nator. Moreover, Fu et al. [22] applied the EBM to 
study a nonlinear oscillation problem in a micro-
beam model. They used an equation for the free vi-
bration of a micro-beam, based on the Euler–Ber-
noulli hypothesis, and they compared the results 
with a fourth-order Runge-Kutta method. 

Bayat et al. [23] investigated He’s VA to solve the 
nonlinear vibration of an electrostatically actuated 
doubly–clamped micro-beam that was equivalent to 
the first order of a higher Hamiltonian method [24]. 
They demonstrated that the VA is a good candidate 
for the precise periodic solution of nonlinear sys-
tems. Final results of mentioned works are listed in 
Table 1. 

The pull-in instability of a cantilever nanoactua-
tor model incorporating the effects of surface, fring-
ing field, and Casimir attraction force was investi-
gated in [26]. Furthermore, an approximate analyti-
cal model for calculating the pull-in voltage of a 
stepped cantilever-type radiofrequency (RF) MEMS 
switch was developed based on the Euler–Bernoulli 
beam and a modified couple stress theory, and it was 
validated by a comparison with the finite element re-
sults [27]. 

Micro-composites are a new class of materials 
used for the mechanical components of MEMSs. Fi-
ber-reinforced composite materials for structural ap-
plications are often made in the form of a thin layer, 
called lamina. It is known that fibers are stiffer and 
stronger than the same material in bulk form, 
whereas matrix materials share their common bulk-
form properties. Ashrafi et al. [28] presented a de-
tailed theoretical investigation of the utility of carbon 
nanotube-reinforced composites for designing actu-
ators with low stiffness and high natural frequencies 
of vibration. The authors investigated the effects of 
the nanotube aspect ratio, dispersion, alignment, and 

volume fraction of the elastic modulus and longitudi-
nal wave velocity, and they calculated the bounds on 
Young's modulus and wave velocity, capturing the 
trends of other experimental results reported in the 
literature. Thostenson and Chou [29] simulated the 
mechanical and physical properties of nanotube-
based composite materials. The focus of this research 
was to develop a fundamental understanding of the 
structure/size influence of aligned multiwalled car-
bon nanotubes on the elastic properties of nanotube-
based composites. The experimental characteriza-
tion results were compared with numerical predic-
tions. Hautamaki et al. [30] conducted an experi-
mental evaluation of MEMS strain sensors embedded 
in composites, examining the effects of wafer geome-
try and composite plate stiffness on MEMS strain sen-
sors. In another study, Spearing [31] discussed the ef-
fects of length scale and material characterization on 
MEMS design. He presented the MEMS materials set 
that is derived from three fabrication routes.  

In this study, in order to design actuators made 
from fiber-reinforced composites, a higher order 
Hamiltonian method [32] was used to obtain an ap-
proximate numerical solution. Contrarily to some re-
cent research, such as [23], we showed that the sec-
ond order result is extremely close to the EBM and 
exact solutions. The methodology of using a higher 
order Hamiltonian approach for solving an ordinary 
differential equation with high nonlinearity is also 
presented. Numerical comparisons and results were 
carried out to confirm the correctness and accuracy 
of the applied method. The ability of the solution for 
estimating the effect of various parameters on natu-
ral frequency is shown and discussed. Sensitivity 
analysis (SA) of the proposed MEMS device was stud-
ied by considering various parameters in the opera-
tion of the micro-beam system. 

Table 1. Comparison of natural frequency formulas for micro-

beams from recent related works 

Fu et al. 

[22] 
ɤ

τÁ σÁ! χÁ!Ⱦσ ρυÁ!Ⱦψ

Á! ςÁ! τÁ
 

Rafieipour 

et al. [25] 

Ѝς

τ

φτὥ τψὃὥ τπὃὥ συὃὥ

υὃὥ φὃὥ ψὥ
 

Bayat et 

al. [23] 
Ѝς

τ

φτὥ τψὃὥ τπὃὥ συὃὥ

σὃὥ τὃὥ ψὥ
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2. Mathematical Model  

Figures 1 and 2 depict the fiber-reinforced lamina 
clamped–clamped micro-beam, with length  ἴ, 
width Ἢ, constant thickness h, initial gap Ἧ, and ap-
plied voltage ἤ. The micro-beam is doubly clamped 
and placed between two completely fixed electrodes. 
The applied voltage results from the electric field, 
which can be divided into a DC polarization and an 
AC electric field. 

Applying an AC electric field or a periodic me-
chanical load causes the dynamic deflection and vi-
bration of the micro-beam [33]. For more design op-
tions and capabilities, computational studies are es-
sential in addition to experiments. However, there 
are no exact (analytical) closed-form solutions for all 
boundary conditions of mechanical systems. As a 
good alternative, the free vibration of MEMSs can be 
simulated by applying a Galerkin method (GM) and 
utilizing classical beam theory.  

Regarding the effect of mid-plane deformation, 
the nonlinear partial differential equation of trans-
verse motion could be expressed as follows [34]: 

%) ʍ3 . ᷿

ÑØȟÔ , 
(1) 

where Ἷ ὀȟἼ  is the transverse deflection, Ἇ is 
the Young’s modulus,  is the Poisson's ratio, and Ἇ is 
the effective modulus of the micro-beam. The quan-
tity of Ἇ changes with the different thicknesses of the 
micro-beam, as follows [25]: 

 
Figure 1. Schematics of doubly-clamped micro-electro-me-

chanical resonator 

 
Figure 2. Schematics of deformed micro-electro-mechanical 

resonator with applied voltage 

%

%

ρ ʑ
     ÆÏÒ ×ÉÄÅ ÍÉÃÒÏÂÅÁÍ Â  υÈ

 %          ÆÏÒ ÎÁÒÒÏ× ÍÉÃÒÏÂÅÁÍ Â  υÈ
 (2) 

Then, by using a theoretical approach to deter-
mine the engineering constants of a continuous fiber-
reinforced composite material based on whether the 
applied loads are parallel or perpendicular to the fi-
ber direction, the effect of fiber-reinforced composite 
material on the quantity of Ἇ and  can be expressed 
in terms of a modulus, Poisson's ratios, and volume 
fractions of the constituents [35]: 

% %Ö %Ö  

%
%%

%Ö %Ö
 

ʑ ʑÖ ʑÖ  

(3) 

Ἇis is the longitudinal modulus, Ἇ is the trans-
verse modulus to the fiber direction in the plane of 
the lamina,  is the major Poisson's ratio, ἏἮ is the 
modulus of the fiber, and Ἇἵ is the modulus of the 
matrix; Ἦ is the Poisson's ratio of the fiber, ἵ is the 
Poisson's ratio of the matrix, ἾἮ is the fiber volume 
fraction, and Ἶἵ is the matrix volume fraction. Hence, 
an effective modulus for the micro-beam can be im-
plemented by the following equation for the direc-
tion on the laminar plane to be parallel to the fiber: 

%
%

ρ ʑ
    ÆÏÒ Á ×ÉÄÅ ÍÉÃÒÏÂÅÁÍ Â  υÈ

 %         ÆÏÒ Á ÎÁÒÒÏ× ÍÉÃÒÏÂÅÁÍ Â  υÈ

 
(4) 

For the direction on the laminar plane to be trans-
verse to the fiber, we would have 

%
%

ρ ʑ
    ÆÏÒ ×ÉÄÅ ÍÉÃÒÏÂÅÁÍ Â  υÈ

 %        ÆÏÒ ÎÁÒÒÏ× ÍÉÃÒÏÂÅÁÍ Â  υÈ

 
(5) 

Ἒ Symbolizes the tensile or compressive axial 
load and is related to the discrepancy of both the 
thermal expansion coefficient and the crystal lattice 
period between the substrate and the micro-beam. 
Ἱ  ὀȟἼ  is the normalized motivating force that is de-
rived from electrostatic excitation, as follows [36]:  

ÑØȟÔ
ȟ ȟ

 , (6) 

where Ἶ Ȣ  ἸἐȾἵ is the dielectric constant 
of the interface. The boundary conditions are as fol-
lows: 

×πȟÔ ×ÌȟÔ π  (7) 

πȟÔ ÌȟÔ π  (8) 

The following dimensionless parameters are used 
to normalize Eq. (1): 
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Ì
 ȟ7

×

Ç
 ȟʐ Ô 

%)

ʍÂÈÌ
 ȟ  

             ɻ φ ȟ.  ȟ6   

(9) 

Then, dimensionless boundary conditions can be 
written as follows:  

7 πȟʐ 7 ρȟʐ π  (10) 

Ћ7

ЋØ
πȟʐ

Ћ7

ЋØ
ρȟʐ π (11) 

Based on the presented formulas, a dimensionless 
equation of motion can be implemented for MEMS 
resonators using the following equation: 

. ɻ᷿

  
(12) 

By using the assumed modes method, the dimen-
sionless deflection solution of Eq. (12) can be intro-
duced as follows:  

7 ʊȟʐ В  ʊÕʐ , (13) ה

where ἱ  is the ἱth Eigen function of a micro-
beam that fulfills the appropriate boundary condi-
tions, Ἵἱ  is the ἱth time-dependent deflection co-
ordinate, and ἶ is the supposed degree of freedom of 
the micro-beam.  

To solve Eq. (12), we consider a single-degree-of-
freedom model ἶ , and deflection func-
tion ἥ ȟ  is assumed to be as follows:  

7 ʊȟʐ  ʊ Õ ʐ  (14) ה

The trial function is 

ʊ ה ρφ ʊ ρ ʊ  . (15) 

This function satisfies the boundary conditions.  
Then, by substituting the presented functions into 

the dimensionless equation of motion and integrat-
ing from 0 to 1, the dimensionless equation of motion 
changes [22]:  

ÕÁÕ ÁÕ Á ÁÕ ÁÕ ÁÕ
ÁÕ π    

ÕÎÄÅÒ   Õπ !ȟÕπ π , 

(16) 

where 

Á Äʊ ȟÁה᷿ ς᷿   Äʊ ȟה

Á   Äʊ ȟה᷿

Á ᷿ ה ה הה. ה6 Äʊ   

Á ᷿ ςה ה ς.הה

ɻ᷿ה ה ה ÄʊÄʊ   

Á ᷿ ה ה הה.

ςɻה ה ᷿ ה ÄʊÄʊ   

Á ᷿ ɻה ה ᷿ ה ÄʊÄʊ   

(17) 

3. Solution Procedure  

For the following general oscillator, 

Õ ÆÕÔ π         

               Õπ !ȟ      ÁÎÄ          Õπ π , 
(18) 

where u and t are the generalized dimensionless dis-
placement and dimensionless time, respectively, and 
Ἃ is the oscillator amplitude. Based on the variational 
principle, by implementing the semi-inverse [37, 38] 
and He [13, 39] methods, the variation parameter can 
be written as 

*Õ ᷿ Õ &Õ  ÄÔ
 

, (19) 

where ἢ Ⱦ  is the oscillator vibration period 

and 
ἐ

Ἵ
ἮἽ. Thus, the Hamiltonian approach in the 

presented problem can be expressed as follows: 

(
ρ

ς
Õ &Õ &! (20) 

Then, by defining a new function, we have 

2Ô
ρ

ς
Õ &Õ &! (21) 

By choosing any arbitrary point, such as Ἴ 

 Ⱦ , and setting ἠἼ , an approximate fre-

quencyɀamplitude relationship can be obtained. This 
approach is much simpler than other traditional 
methods and has become widely used [40]. The accu-
racy of this location method, however, strongly de-
pends upon the chosen location point. To overcome 
the shortcomings of the EBM, a new approach, based 
on the Hamiltonian one, has been suggested [32]. Dif-
ferentiating the Hamiltonian approach leads us to 
natural frequency of the system: 
Ћ(

Ћ!
π (22) 

For greater convenience, a new function, ἒἽ, is 
defined as follows: 

(Õ
ρ

ς
Õ &Õ ÄÔ

Ⱦ

ρ

τ
4( (23) 

Then, for the natural frequencies of the system, 
the following relation is used: 

π  or  π (24) 

From Eq. (24), we can obtain the approximate fre-
quencyɀamplitude relationship of a nonlinear oscil-
lator [32, 41]. For the current special problem, we 
have the following Hamiltonian equation:  

(Õ ᷿ ÁÕ ÁÕ Á Õ
Ⱦ

ÁÕ ÁÕ ÁÕ ÁÕ ÄÔ  
(25) 



 

S. Sadeghzadeh, A. Kabiri / Mechanics of Advanced Composite Structures 5 (2018) 25–39 29 

 

 

3.1. First-order Hamiltonian approach 

After satisfying the initial conditions, utilizing Ἵ
ἋἫἷἻἼ as the trial function in Eq. (25), we obtain 

Ὄό ᷿ ὥ ὃÃÏÓὸ 

ὥ ὃÃÏÓὸ ὥ ὃÓÉÎὸ

ὥ ὃÃÏÓὸ ὥ ὃÃÏÓὸ

ὥ ὃÃÏÓὸ ὥ ὃÃÏÓὸ Ὠὸ  

(26) 

This leads to the following: 

(Õ ᷿ !ʖÓÉÎÔÁ !ÃÏÓÔ 

Á !ÃÏÓÔ Á Á !ÃÏÓÔ 

Á !ÃÏÓÔ Á !ÃÏÓÔ

Á !ÃÏÓÔ ÄÔ  

(27) 

Then, the frequencyɀamplitude relationship can 
be obtained from the following: 

πO ! πȢχψυÁ πȢχψυÁʖ

πȢσως!Á πȢυψω!Áʖ
πȢςωτ!Á πȢτωπ!Áʖ
πȢτςω!Áʖ π  

(28) 

Therefore, after some approximations and simpli-
fications, Eq. (28) can be solved, and the natural fre-
quency can be obtained as follows: 

ʖ
Ȣ Ȣ Ȣ Ȣ

Ȣ Ȣ Ȣ
   (29) 

That is approximately equal to 

ʖ

Ѝς

τ

φτÁ τψ!Á τπ!Á συ!Á

σ!Á τ!Á ψÁ
 

(30) 

Both the VA [23] and the analytical approximate 
solution [25] have the same result for this problem. 

3.2. Second-order Hamiltonian approach 

To improve the accuracy of this approach, a 
higher order periodic solution was assumed as the 
time response function: 

Õ ÁÃÏÓʖÔ ÂÃÏÓσʖÔ , (31) 

where the initial condition is 

! Á Â  (32) 

By Substituting Eq. (32) into Eq. (25), we can ob-
tain 

(Õ ᷿ ʖÁ ÁÃÏÓÔ ÂÃÏÓσÔ 

Á ÁÃÏÓÔ ÂÃÏÓσÔ Á ÁÓÉÎÔ

σÂÓÉÎσÔ Á ÁÃÏÓÔ ÂÃÏÓσÔ

Á ÁÃÏÓÔ ÂÃÏÓσÔ Á ÁÃÏÓÔ

ÂÃÏÓσÔ Á ÁÃÏÓÔ ÂÃÏÓσÔ ÄÔ  

(33) 

Subsequently, the frequencyɀamplitude relation-
ship can be obtained from the following equation: 
πȢστσÁÁ πȢσωςÁÁ σȢςσωÁÁÂ
σȢωςφÁÁÂ χȢπφψÁÂ τȢτρχÁÁÂ
ρρȢρωρÁÁÂ σȢυστÁÂ ςȢφυπÁÂ
πȢρωφÁÁʖ πȢςτυÁÁʖ
πȢςυχÁÁʖ πȢχψυÁÂʖ
ρȢρχψÁÁÂʖ ρȢτχςÁÁÂʖ
ρȢψπσÁÁÂʖ ρȢτχςÁÁÂʖ
σȢψφυÁÁÂʖ πȢυψωÁÂʖ
ςȢωτυÁÁÂʖ χȢχσρÁÁÂʖ
τȢςωυÁÁÂʖ πȢτωπÁÂʖ
υȢρυτÁÁÂʖ πȢτςωÁÂʖ π  

(34) 

To obtain the natural frequency, substituting Eq. 
(32) into (34) as Ἢ Ἃ Ἡ, a second-order algebraic 
equation set becomes solvable, allowing the natural 
frequency and a and b values to be obtained for vari-
ous values of Ἃ and ἤ. Some of the results are listed 
in Table 2. 

3.3. Third-order Hamiltonian approach 

A third -order time response can be used for the 
micro-beam, as follows 

Õ ÁÃÏÓʖÔ ÂÃÏÓσʖÔ ÃÃÏÓυʖÔ, (35) 

where the initial condition is 

ὃ ὥ ὦ ὧ (36) 

Similar to the second-order Hamiltonian ap-
proach, with some mathematical simplification, val-
ues of ἩȟἪȟἩἶἬ Ἣ can be obtained for various values 
of A and V (see Table 3 for examples). 

4. Validation, Results, and Discussion  

4.1. Computational efficiency 

The nonlinear algebraic equations presented 
were solved using Wolfram Mathematica software on 
an Intel(R) CoreΆ i5-3230M CPU 2.6-GHz processor, 
including 6 GB of installed memory on a 64-bit oper-
ating system. The required time for calculating natu-
ral frequencies was 5ɀ10 seconds, 30ɀ40 seconds, 
and 3.5ɀ4 minutes for fir st-, second-, and thi rd-order 
Hamiltonian approaches, respectively. In terms of ac-
curacy and computational efficiency, the second-or-
der solution was the best. 

Table 2. Á ÁÎÄ  Â parameters for different ! and 6 values                   

(. ρπȟα ςτ 

!ȟ6 Á Â 

(0. 3, 10) πȢςωψσυ πȢππρφτ 

(0. 4, 10) πȢσωυυτ πȢππττυ 

(0. 5, 10) πȢτωπρυ πȢππωψτ 

(0. 6, 10) πȢυψπωτ πȢπρωπυ 

(0. 7, 10) πȢφφφυσ πȢπσστφ 
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Table 3. ÁȟÂȟÁÎÄ Ã parameters for different ! and 6 values                    

(. ρπȟα ςτ 

!ȟ6 Á Â Ã 

(0. 3, 10) πȢςωψσπ πȢππρφυ πȢππππτφ 

(0. 4, 10) πȢσωυσρ πȢππττφ πȢπππςρψ 

(0. 5, 10) πȢτψωσς πȢππωως πȢπππχυτ 

(0. 6, 10) πȢυχψτω πȢπρωσχ πȢππςρσυ 

(0. 7, 10) πȢφφπσφ πȢπσττς πȢππυςρυ 

4.2. Validation 

In comparison with previous works, where 
higher order approximations were not used, more 
accurate dynamic responses and natural frequencies 
were observed. The EBM is the best criterion for such 
comparisons. Figure 3 depicts a comparison of the 
dynamic response of a micro-beam under electric ex-
citation (V =  24 Volts), with parameters Ἒ ȟἩ
ȟἩἶἬ Ἃ Ȣ obtained with the first-, second-, 

and thi rd-order Hamiltonian approaches. These 
comparisons were repeated (see Fig. 4) after chang-
ing the A value to 0.5. 

Table 4 compares the frequencies commensurate 
for different parameters of the system, obtained from 
the Hamiltonian method and the EBM [22]. Exact val-
ues are also reported for some cases. Accuracy in-
creases with an increase in the order of approxima-
tions. When the order increases, more accurate re-
sults are achieved. Increasing the applied voltage or 
initial amplitude leads to a greater number of errors. 
Thus, in the case of larger initial amplitude and ap-
plied voltage, higher order approximations would be 
more useful than lower order ones. 

 
Figure 3.  Comparison of dynamic responses obtained using 

higher order Hamiltonian approaches and an EBM solution (Ἒ

ȟἩ ȟἤ ȟἋ Ȣ  

 
Figure 4.  Comparison of dynamic responses obtained using 

higher order Hamiltonian approaches and an EBM solution (Ἒ

ȟἩ ȟἤ ȟἋ Ȣ) 
 

4.3. Phase diagram of micro-beam 

Simplifying the convolution of a nonlinear system 
to a pseudo-linear model can provide a useful view 
on the stability and controllability of a system. For 
example, let us assume that a nonlinear MEMS micro-
beam has a linear-wise model, as below, that includes 
all nonlinearities in the second part of its dynamics: 

ὼ ὃὼ ὄό ɰ ὼȟὸȟό  (37) 

A nonlinear term ( ἚἷἶἴἱἶἭἩἺὀȟἼȟἽ) may contain 
a high level of nonlinearity because it includes space, 
time, and input variables as operands. Figure 5 
shows the effect of parameters Ἃ and V on the phase 
plane of a system for Ἒ ȟἩ ȟἩἶἬ ἤ
ȟ simulated using a second-order Hamiltonian 

method. As can be seen in Figure 5, by increasing the 
order of Hamiltonian approach, the amplitude pa-
rameters (a, b, c) decrease; thus, the overall ampli-
tude also decreases. When a micro-beam resonates 
near the zero point as the basal condition, a notable 
reduction in the velocity of the resonator is observa-
ble. This phenomenon disappears immediately after 
it passes from the basal condition. This means that 
the dynamics of this nonlinear system also depend on 
the position of the point that is being measured on 
the MEMS micro-beam. 
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 Table 4. Comparison of natural frequencies (rad/s) for various parameters of the system (ὔ ρπȟ ςτ 

!ȟ6 ɤ  ɤ   ɤ   ɤ   ɤ  ɤ  

(0. 3, 0) 26. 3644 26. 3644 26. 3672 26. 3669 26. 3867 26.8372 

(0. 3, 10) 24. 2526 24. 2526 24. 2547 24. 2543 ςτȢςχυσ - 

(0. 3, 20) 16. 3556 16. 3556 16. 3552 16. 3547 16. 3829 16.6486 

(0. 4, 0) 27. 2053 27. 2053 27. 2214 27. 2195 27. 2759 - 

(0. 4, 10) 25. 0500 25. 0500 25. 0639 25. 0621 25. 1217 - 

(0. 4, 20) 17. 0187 17. 0187 17. 0238 17. 0219 17. 1023 - 

(0. 5, 0) 28. 0019 28. 0019 28. 0657 27. 0605 28. 1758 - 

(0. 5, 10) 25. 7611 25. 7611 25. 8203 25. 8155 25. 9365 - 

(0. 5, 20) 17. 3839 17. 3839 17. 4270 17. 4241 17. 5835 - 

(0. 6, 0) 28. 5579 28. 5579 28. 7564 28. 7499 28. 9227 28.5382 

(0. 6, 10) 26. 1671 26. 1671 26. 3600 26. 3562 26. 5324 - 

(0. 6, 20) 17. 0940 17. 0940 17. 2901 17. 3013 17. 5017 18.5902 

 
 

 

 
Figure 5 . Effect of Ἃ and V parameters on the phase plan 

of the system for Ἒ ȟἩ ȟἩἶἬ ἤ  simulated us-
ing a second-order Hamiltonian approach 

 
Figure 6 . Effect of Ἒ and  parameters on the frequency of 
an electrostatically actuated micro-beam with ἤ ȟ

ȟἚ ȟ and various values of A 

 
 

4.4. Free vibration 
Figure 6 shows the effect of Ἒ and  parameters 

on natural frequency. It can be observed that the fre-
quency is proportional to N. However, it decreases 
when initial amplitude (A) increases. The second-or-
der Hamiltonian approach has nearly same response 
as that of the EBM solution, even for higher values of 

N and A. Furthermore, it can be observed that the fre-
quency increases with increasing . Results obtained 
by the second-order Hamiltonian approach are close 
to the EBM solution, especially for low amplitudes 
and  values. 
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Figure 7 shows the effect of applied voltage on the 
natural frequency of an electrostatically actuated mi-
cro-beam. It is apparent that the frequency is de-
creased with an increase in voltage. The results of the 
second-order Hamiltonian approach are extremely 
close to the EBM solution, but they have considerable 
discrepancies in terms of high amplitudes and ap-
plied voltages. 

The nonlinear behavior of the system leads to an 
abrupt fall in high applied voltage. The natural fre-
quency decreases dramatically at high voltages. 
However, natural frequency also increases with an 
increase in amplitude. This is due to the following ef-
fect: when the initial amplitude increases, the equiv-
alent linear system of the electrostatically actuated 
micro-beam is hardened. It was also observed that 
for higher amplitudes, the discrepancy is less than 
that of lower values. 

Several simulations and plots can be introduced 
to facilitate fundamental design requirements before 
any manufacturing process. Based on the presented 
examples, the proposed nonlinear model based on a 
Hamiltonian approach is efficient and sufficiently ac-
ceptable to determine the effects of parameters on 
the natural frequency and the phase plane diagram of 
an electrostatically actuated micro-beam. 

Figures 8 and 9 show the effect of the thickness of 
an electrostatically actuated micro-beam on the nat-
ural frequency at various initial amplitudes when ge-
ometrical and structural lamina properties at a fiber-
volume fraction of 0.67 are chosen (see Table 5). As 
demonstrated clearly, natural frequency decreases 
with an increase in the thickness of a micro-beam. 

 
Figure 7 . Effect of ἤ parameter on the natural frequency 

of an electrostatically actuated micro-beam with Ἒ
ȟ , and various values of A 

 
 

Table 5. Nominal inputs and standard deviations for the micro-

switch parameters 
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Figure 8. Variation of natural frequency due to the thick-
ness of the micro-beam, thickness (h), where the applied 

load is parallel to the fiber direction 

 
Figure 9. Variation of natural frequency due to the thick-

ness of the micro-beam, (h), where applied load is perpen-
dicular to the fiber direction 

5. Sensitivity analysis  
When a sensor or actuator is designed based on 

micro-beams, recognizing the parameters can help 
the designer to obtain the best resolution and accu-
racy. This issue can be addressed by conducting SA 
on electrostatically actuated micro-beams. Thus, SA 
of the model, with respect to the model parameters, 
is a key step. SA can classify the values of various sig-
nificant parameters according to the proposed re-
search preferences [43]. 

Various parameters contribute to the final re-
sponses in any nonlinear system under considera-
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tion. Parameters include the length ἴ, width Ἢ, thick-
ness ἰȟ 9ÏÕÎÇȭÓ ÍÏÄÕÌÕÓȟ ÁÎÄ 0ÏÉÓÓÏÎͻÓ ÒÁÔÉÏ ÏÆ a mi-
cro-beam on the one hand and the initial gap Ἧ, elec-
trostatic load ἤ,  ȟἩἶἬ Ἒ on the other. This model 
requires the identification of many parameters and 
inputs at varying levels of sensitivity, and various SA 
methods can be used to achieve this requirement. 
The Sobol method is a famous SA approach based on 
variance that is widely used in various studies and 
scientific fields, such as hydrogeology, geotechnics, 
ocean engineering, biomedical engineering, hybrid 
dynamic simulation, and electromagnetism. 

5.1. Simple form of sensitivity  

A simple form of determining sensitivity for natu-
ral frequency respecting these parameters could be 
achieved by differentiating the natural frequency 
with respect to the parameters and plotting the re-
sults (e.g., Figure 10). Below, ἡ  represents the sen-
sitivity of  with respect to the variation of parame-
ter : 

Ὓ   (38) 

Using the parameters introduced in Table 5, Figs. 
10 to 13 are presented to depict variations in sensi-
tivity with respect to various parameters. Figure 10 
shows the sensitivity of an electrostatically actuated 
micro-beam with respect to parameter . It can be 
observed that sensitivity decreases with increases in 

parameter . Since 
Ἧἷ

ἰ
 in the presented sen-

sitivity plot , this means that if Ἧἷ increases or ἰ de-
creases, the micro-beam reacts less easily to external 
excitations. Increasing the thickness increases the 
system rigidity, which makes the micro-beamless 
sensitive. In contrast, decreasing the gap between the 
beam and the electrodes of an electrostatically actu-
ated micro-beam results in a lower excitation output. 

 
Figure 10 . Sensitivity plot of an electrostatically actuated 
micro-beam with respect to the variation of parameter  

with Ἒ ȟἤ ȟ and various amplitudes 

Figure 11 depicts micro-beam sensitivity versus 
the external load. With increased external loads, sen-
sitivity decreases because of the rigidity . The rigidity 
increases due to system hardening, which is caused 
by higher external loads. 

Figure 12 shows a sensitivity plot of a micro-
beam with respect to the applied voltage. By applying 
more voltage, a less-sensitive sensor and actuator 
can be achieved. Although more sensitivity is a good 
option for low applied voltages, supplementary 
equipment for detecting and exciting the system 
would be extremely challenging. Therefore, it is not 
suggested for practical purposes. 

In Figure 13, a sensitivity plot of a micro-beam 
with respect to the modulus of elasticity is shown. 
The modulus of elasticity can be considered to be 
about 700 GPa. Greater hardness leads to greater 
sensitivity, so any approach that increases the stiff-
ness of a micro-beam improves its efficiency. Carbon-
fiber reinforced nanostructures improve the electro-
mechanical properties [44]. 

 
Figure 11 . Sensitivity plot of an electrostatically actuated 
micro-beam with respect to the variation of parameter Ἒ 

with ȟἤ ȟ and various amplitudes 

 

 
Figure 12 . Sensitivity plot of an electrostatically actuated 
micro-beam with respect to the variation of parameter V 

with Ἒ ȟ , and various amplitudes 
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Figure 13 . Sensitivity plot of an electrostatically actuated 
micro-beam with respect to the variation of parameter Ἇ 

with various amplitudes 

5.2. The Sobol method of global sensitivity 
The Sobol method for nonlinear models is used 

here to achieve an optimal design. This method was 
used to investigate the effects of a geometrical pa-
rameter on the natural frequency when all other pa-
rameters are changing at the same time. The inputs 
are changed, and the effect of each one on the model 
output is analyzed.  

For nonlinear mathematical models with numer-
ous inputs, it is often difficult to anticipate the re-
sponse of the model output to changes in the inputs. 
Complicated interactions of physical processes mean 
that varying one input parameter at a time does not 
adequately characterize the range of possible model 
outputs, although a one-at-a-time analysis may be 
valuable as a preliminary screening exercise. A com-
prehensive SA must examine the response of the 
model to changes in all parameters across their range 
of values; this is known as global SA. 

Between different general sensitivity analyses, 
variance-based methods are gaining the most atten-
tion. In these methods, the sensitivity index is com-
puted as the share of each parameter in the overall 
output variance of the model. The Sobol method [45] 
is an independent general SA method based on vari-
ance analysis.  

We consider a computer model ἧ, and thus, this 
relation can be written as follows: 

ὣ Ὢὼȟὼȟȣȟὼ , (39) 

where n is the number of independent parame-
ters. 

The input independent parameter region should 
ÂÅ ÄÅÔÅÒÍÉÎÅÄ ÁÓ ÆÏÌÌÏ×Ó ÔÏ ÅØÐÌÁÉÎ ÔÈÅ 3ÏÂÏÌȭÓ 
method: 

  ὢὼ ὼ ὼ ȠὭ ρȟȣȟὲ, (40) 

where ὀἱ
ἵἱἶ and ὀἱ

ἵἩὀare the minimum and maxi-
mum values for ὀἱ, respectively. 

The Sobol sensitivity indices are ratios of partial 
variances to the total variance. We can subdivide 
them into partial variances of increasing dimension-
ality: 

ὠὣ В ὠ В В ὠ Ễ ὠ ȣ , (41) 

where for any input ἱ, В ἤἱ
Ἱ
ἱ  is called its first-order or 

main effect sensitivity index, В В ἤἱἲ
ἶ
ἲἱ

ἶ
ἱ  includes all 

the partial variances of interaction of two input pa-
rameters, and so on. 

The representation of function ἧ is derived from 
the sum of the following functions: 

Ὢὼȟὼȟȣȟὼ Ὢ В Ὢὼ

В Ὢ ὼȟὼ Ễ

Ὢȟȟȣȟ ὼȟὼȟȣȟὼ , 

(42) 

 
where Ἦ is constant and is determined as follows: 

Ὢ ὪὼὪὼ (43) 

Sobol showed that the decomposition of Eq. (25) 
is unique. Also, all terms of the mentioned equation 
can be evaluated via the following multidimensional 
integrals: 

Ὢὼ Ὢ ȣ ὪὼὨὼͯ  (44) 

Ὢ ὼȟὼ Ὢ ВὪὼ

᷿ȣ᷿ὪὼὨὼͯ , 
(45) 

where Ἤὀͯἱ ἩἶἬ  Ἤὀͯἱἲ show the integration over all 

the variables, excluding ὀἱ and ὀἲ, respectively. 

Hence, for higher order terms, a continuous formula 
can be obtained. In the sensitivity indices based on 
variance, the total variance of Ἦὀ , ἤ is expressed as 

ὠ Ὢ ὼὨὼ Ὢ  (46) 

Partial variances are computed as follows: 

ὠȟȣȟ Ὢȟȣȟ ὼȟȣȟὼ Ὠὼ Ὢ  (47) 

According to Eq. (41), the sensitivity measures 
ἡȟȟȣȟἳ are given by 

Ὓȟȟȣȟ
ὠȟȟȣȟ
ὠ
    ȟ      ρ Ὥ Ễ Ὥ (48) 

 
The measure of the first  order ἡἱ evaluates the 

contribution of the variation of ὀἱ to the total vari-
ance of Y. The measure of the second order of ἡἱἲ eval-

uates the contribution of the interaction of ὀἱ and ὀἲ 

on the output, and so on. 
"Ù ÁÐÐÌÙÉÎÇ 3ÏÂÏÌȭÓ ÓÅÎÓÉÔÉÖÉÔÙȟ ÔÈÅ ÅÆÆÅÃÔ ÏÆ ÔÈÅ 

electrostatically actuated micro-beam parameters on 
the frequency of the system can be obtained. The first 
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step in SA is to determine the ranges of the model in-
puts. Defining the probability distribution of inputs 
requires the use of sample-based methods (e.g., a 
variance-based method or the Monte Carlo SA 
method). How the input parameters are chosen and 
how their ranges are determined basically depends 
on the objectives of the SA. In this study, we have an-
alyzed four dimensionless parameters 
(Ἇ ȟἚȟȟἩἶἬ ἤ) to predict the influence of various 
parameters of an electrostatically actuated micro-
beam. 

5.2.1 Steps for implementation 

3ÏÂÏÌȭÓ ÁÌÇÏÒÉÔÈÍ ÃÁÎ ÂÅ ÓÕÍÍÁÒÉÚÅÄ by the fol-
lowing steps: 
1. Select the total number of simulations to be per-
formed. 
2. Select the parameters for SA.  
3. Determine ranges for test variables. 
4. Choose a distribution for each of the parameters. 
In this case, a uniform distribution is chosen for all 
four parameters. 
5. Calculate the variance of the parameters using Eq. 
(47).  
6. Compute the partial variance or first order effects 
for each parameter by fixing the values of that pa-
rameter and varying the remaining parameters. 
7. Calculate the total-order index of the parameters 
using Eq. (48).  
8. Sort the parameters according to their sensitivi-
ties. 

Figure 14 shows the effects of dimensionless pa-
rameters on the natural frequency, including YoungȭÓ 
modulus, an axial force toward the beam, applied 
voltage, and the ratio of the gap between the beam 
and the electrodes to the thickness of the beam, via 
the Sobol method. As is observable, by increasing the 
applied initial amplitude, the effects of different pa-
rameters change, and at higher frequencies, the term 

 (
Ἧἷ

ἰ
) has the greatest influence on the natural 

frequency. 
In clamped–clamped beams, the abovementioned 

ratio (beamɀelectrode gap to beam thickness) exerts 
the greatest influence on the natural frequency, and 
the length of the beams has the second-greatest influ-
ence on this frequency. The applied voltage and 
YoungȭÓ modulus are effective on frequencies at low 
amplitudes, but these effects can be ignored at high 
amplitudes. The axial force also has an ignorable in-
fluence on the frequency.  

6. Conclusion  

The sensitivity of a micro-switch containing a 
doubly clamped micro-beam with length ἴ, width Ἢ, 
and constant thickness h (Ἢ ἰ); effective modu-
lus Ἇ; initial gap ἯȠ and electrostatic applied voltage 

ἤ is studied by using a higher order Hamiltonian ap-
proach. A nonlinear partial differential equation of 
the transverse motion resulting from mid-plane de-
formation has been expressed, and the normalized 
motivating force has been calculated based on elec-
trostatic excitation. A dimensionless equation of mo-
tion has been derived based on the variational prin-
ciple. By implementing a semi-inverse method and 
ÅØÐÌÏÉÔÉÎÇ (ÅȭÓ ÍÅÔÈÏÄȟ ÁÎ ÁÐÐÒÏØÉÍÁÔÅ ÆÒÅÑÕÅÎÃÙɀ
amplitude relationship has been obtained. Differenti-
ating the Hamiltonian approach reveals the natural 
frequency of micro-switches. The overall results of 
this study are listed below. 

6.1. Comparisons 

1. The VA and the analytical approximate solution 

had the same results for this problem.  

2. The time required for calculating natural frequen-

cies using the proposed specific computational plat-

form was 5ɀ10 seconds, 30ɀ40 seconds, and 3.5ɀ4 

minutes for first -, second-, and third-order Hamilto-

nian approaches, respectively. The second-order so-

lution was the most efficient computationally and in 

terms of accuracy.  

3. The obtained results have been validated in com-

parison with the EBM, in which higher order approx-

imations are neglected. 

4. By increasing the order of approximation, the ac-

curacy of the proposed method increases. 

5. Increasing the applied voltage or initial amplitude 

leads to more errors. Thus, in the case of a higher in-

itial amplitude and applied voltage, higher order ap-

proximations are essential. 

6.2. Natural frequency calculations 

1. The natural frequency increases as N increases. 

However, it decreases in accordance with  an increase 

of the initial amplitude ( A). Nevertheless, the second-

order Hamiltonian approach produces an extremely 

close response to that of the EBM solution, even for 

higher values of N and higher amplitude. Natural fre-

quency also decreases with amplitude increasing. 

2. The natural frequency increases with increasing 

values of . Results of the second-order Hamiltonian 

approach are close to the EBM solution except for 

high amplitude and  values. The natural frequency 

also decreases as the voltage increases. The results of 

the second-order Hamiltonian approach are ex-

tremely close to the EBM solution aside from consid-

erable discrepancies in high amplitudes and voltages. 
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Figure 14 . Pie chart diagrams of Sobol’s sensitivity analysis (SA) of an electrostatically actuated micro-beam with respect to the variation 

of Ἇ ȟἚȟȟἩἶἬ ἤ parameters with various amplitudes 
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1. The nonlinear behavior of the system leads to an 

abrupt fall in high applied voltages. The natural fre-

quency decreases dramatically at high voltages and 

also decreases at low voltages. 

2. The natural frequency increases with an increase 

in the modulus of elasticity and decreases with in-

creasing thickness of the micro-beam; however, 

these variations are not significant 

6.3. Sensitivity analysis 

1. Sensitivity decreases when  increases. As 

 ÉÓ ÅÑÕÁÌ ÔÏ φ , the presented sensitivity plot 

(i.e. Fig. 10) means that if Ἧἷ increases or ἰ decreases, 

the micro-beam reacts less to external excitations. By 

increasing the thickness, rigidity also increases, 

which leads to less sensitivity of the micro-beam. 

However, decreasing the gap between the beam and 

the electrodes an of electrostatically actuated micro-

beam results in a lower excitation output. 

2. With increased external loads, the sensitivity de-

creases because of increased rigidity ; the rigidity  in-

creases due to system hardening caused by increased 

external loads. 

3. By applying more voltage, a less-sensitive sensor 

and actuator can be achieved. Although greater sen-

sitivity seems to be a good option for low levels of ap-

plied voltage, providing supplementary equipment 

for detecting and exciting the system would be ex-

tremely challenging; therefore, it is not suggested for 

practical purposes. 

4. By the Sobol method, it was shown that at higher 

frequencies, the variable  (φ ) has the greatest 

influence on the natural frequency. In clampedɀ

clamped beams, the ratio of the gap between the 

beam and the electrodes to the thickness of the beam 

has the most influence on the natural frequency, fol-

lowed by the length of the beams (ranked second 

most influential) . The axial force also has an insignif-

icant effect on frequency. 
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