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In this paper, the nonlinear free vibration of fiber-reinforced lamina micro-switches is investi-
gated, and a sensitivity analysis (SA) is given. The switches are modeled as solid rectangular
beams consisting of an isotropic matrix with transversely and longitudinally isotropic reinforce-
ments, incorporating a higher order Hamiltonian approach. An SA of the proposed micro-switch
is presented by calculating the numerical derivatives of the presented nonlinear model with re-
spect to the design parameters. The SA of geometric parameters, such as dimensionless length,
thickness, initial gap, applied voltage, axial load, and effective modules of the system, was con-
ducted using the Sobol method. It was found that the natural frequency varied when changes
were made to the proposed parameters; this finding can be used to optimize future designs.
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1. Introduction

Micro-electro-mechanical systems (MEMSs) are
used in fields such as aerospace, optical, and biomed-
ical engineering, particularly in applications such as
micro-switches, transistors, accelerometers, pres-
sure sensors, micro-mirrors, micro-pumps, micro-
grippers, and bio-MEMSs [1-4]. MEMSs are merged
devices that connect electrical and mechanical com-
ponents. Studying the dynamic and static behaviors
of atomic force microscope (AFM) cantilevers and
controlling the vibration of these cantilevers are ex-
amples of challenges that involve both electrical and
mechanical components [5-8]. Ghalambaz et al. [9]
studied the effects of Van der Waals attraction, Casi-
mir force, small size stretching, fringing field, mid-
plane stretching, and axial load on the oscillation fre-
quency of resonators.
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The inherent intricacy of the nonlinear vibration
of MEMSs makes numerical solutions a better choice
than analytical ones. The shooting method [10], the
differential quadrature method [11], the homotopy
analysis method (HAM) [12], the variational ap-
proach (VA) [13], the max-min approach (MMA) [14,
15], and the energy balance method (EBM) [16] are
some of the numerical and approximate analytical
approaches than can be addressed. Ganji et al. [17]
applied the EBM and an amplitude frequency formu-
lation (AFF) to govern the approximate analytical so-
lution for the motion of two mechanical oscillators.
They showed that in comparison with a fourth-order
Runge-Kutta method, their solution is intuitive and
useful for solving strongly nonlinear oscillators.
When Ganji and Azimi [18] used both the MMA and
an AFF to derive an approximate analytical solution
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for the free vibrating motion of nonlinear, conserva-
tive, single-degree-of-freedom systems, they con-
cluded that both methods had the same results. Both
of these methods are convenient for solving nonlin-
ear equations and can also be utilized for a wide
range of time and boundary conditions for nonlinear
oscillators.

Yildirim, Saadatnia et al. [19] applied the Hamil-
tonian approach to obtain the natural frequency of a
Duffing oscillator; the obtained results were in com-
plete agreement with the approximate frequencies
and the exact solution. Askari [20] utilized a higher
order Hamiltonian approach to elicit approximate
solutions for the model of buckling in a column and
mass-spring system. Khan and Akbarzade [21] used
a VA, a Hamiltonian approach, and an AFF to analyze
a nonlinear oscillator equation in a double-sided
clamped micro-beam-based electromechanical reso-
nator. Moreover, Fu et al. [22] applied the EBM to
study a nonlinear oscillation problem in a micro-
beam model. They used an equation for the free vi-
bration of a micro-beam, based on the Euler-Ber-
noulli hypothesis, and they compared the results
with a fourth-order Runge-Kutta method.

Bayat et al. [23] investigated He’s VA to solve the
nonlinear vibration of an electrostatically actuated
doubly-clamped micro-beam that was equivalent to
the first order of a higher Hamiltonian method [24].
They demonstrated that the VA is a good candidate
for the precise periodic solution of nonlinear sys-
tems. Final results of mentioned works are listed in
Table 1.

The pull-in instability of a cantilever nanoactua-
tor model incorporating the effects of surface, fring-
ing field, and Casimir attraction force was investi-
gated in [26]. Furthermore, an approximate analyti-
cal model for calculating the pull-in voltage of a
stepped cantilever-type radiofrequency (RF) MEMS
switch was developed based on the Euler-Bernoulli
beam and a modified couple stress theory, and it was
validated by a comparison with the finite element re-
sults [27].

Micro-composites are a new class of materials
used for the mechanical components of MEMSs. Fi-
ber-reinforced composite materials for structural ap-
plications are often made in the form of a thin layer,
called lamina. It is known that fibers are stiffer and
stronger than the same material in bulk form,
whereas matrix materials share their common bulk-
form properties. Ashrafi et al. [28] presented a de-
tailed theoretical investigation of the utility of carbon
nanotube-reinforced composites for designing actu-
ators with low stiffness and high natural frequencies
of vibration. The authors investigated the effects of
the nanotube aspect ratio, dispersion, alignment, and

volume fraction of the elastic modulus and longitudi-
nal wave velocity, and they calculated the bounds on
Young's modulus and wave velocity, capturing the
trends of other experimental results reported in the
literature. Thostenson and Chou [29] simulated the
mechanical and physical properties of nanotube-
based composite materials. The focus of this research
was to develop a fundamental understanding of the
structure/size influence of aligned multiwalled car-
bon nanotubes on the elastic properties of nanotube-
based composites. The experimental characteriza-
tion results were compared with numerical predic-
tions. Hautamaki et al. [30] conducted an experi-
mental evaluation of MEMS strain sensors embedded
in composites, examining the effects of wafer geome-
try and composite plate stiffness on MEMS strain sen-
sors. In another study, Spearing [31] discussed the ef-
fects of length scale and material characterization on
MEMS design. He presented the MEMS materials set
that is derived from three fabrication routes.

In this study, in order to design actuators made
from fiber-reinforced composites, a higher order
Hamiltonian method [32] was used to obtain an ap-
proximate numerical solution. Contrarily to some re-
cent research, such as [23], we showed that the sec-
ond order result is extremely close to the EBM and
exact solutions. The methodology of using a higher
order Hamiltonian approach for solving an ordinary
differential equation with high nonlinearity is also
presented. Numerical comparisons and results were
carried out to confirm the correctness and accuracy
of the applied method. The ability of the solution for
estimating the effect of various parameters on natu-
ral frequency is shown and discussed. Sensitivity
analysis (SA) of the proposed MEMS device was stud-
ied by considering various parameters in the opera-
tion of the micro-beam system.

Table 1. Comparison of natural frequency formulas for micro-
beams from recent related works
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2. Mathematical Model

Figures 1 and 2 depict the fiber-reinforced lamina
clamped-clamped micro-beam, with length T,
width "H constant thickness h, initial gap "H, and ap-
plied voltage f}. The micro-beam is doubly clamped
and placed between two completely fixed electrodes.
The applied voltage results from the electric field,
which can be divided into a DC polarization and an
AC electric field.

Applying an AC electric field or a periodic me-
chanical load causes the dynamic deflection and vi-
bration of the micro-beam [33]. For more design op-
tions and capabilities, computational studies are es-
sential in addition to experiments. However, there
are no exact (analytical) closed-form solutions for all
boundary conditions of mechanical systems. As a
good alternative, the free vibration of MEMSs can be
simulated by applying a Galerkin method (GM) and
utilizing classical beam theory.

Regarding the effect of mid-plane deformation,
the nonlinear partial differential equation of trans-
verse motion could be expressed as follows [34]:

H— M— . = = — (1)

N @0,
where I 0f1 is the transverse deflection, Ais
the Young’s modulus, isthe Poisson's ratio, and "Ais
the effective modulus of the micro-beam. The quan-
tity of Achanges with the different thicknesses of the
micro-beam, as follows [25]:

Figure 1. Schematics of doubly-clamped micro-electro-me-
chanical resonator

Figure 2. Schematics of deformed micro-electro-mechanical
resonator with applied voltage
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Then, by using a theoretical approach to deter-
mine the engineering constants of a continuous fiber-
reinforced composite material based on whether the
applied loads are parallel or perpendicular to the fi-
ber direction, the effect of fiber-reinforced composite
material on the quantity of Aand can be expressed
in terms of a modulus, Poisson's ratios, and volume

fractions of the constituents [35]:
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Ais is the longitudinal modulus, A is the trans-
verse modulus to the fiber direction in the plane of
the lamina, is the major Poisson's ratio, Ayjs the
modulus of the fiber, and A is the modulus of the
matrix; =is the Poisson's ratio of the fiber, ; isthe

Poisson's ratio of the matrix, "kyis the fiber volume

fraction, and "} is the matrix volume fraction. Hence,

an effective modulus for the micro-beam can be im-

plemented by the following equation for the direc-

tion on the laminar plane to be parallel to the fiber:

%

%

%

EIMBEAEAOAAAR v (4)
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For the direction on the laminar plane to be trans-
verse to the fiber, we would have

%
%

&
% AITAOATEBXACAAAR uE
"E Symbolizes the tensile or compressive axial
load and is related to the discrepancy of both the
thermal expansion coefficient and the crystal lattice
period between the substrate and the micro-beam.
1 OR1 isthenormalized motivating force that is de-
rived from electrostatic excitation, as follows [36]:
N @O - — (6)
where ~ 8 | € isthe dielectric constant
of the interface.The boundary conditions are as fol-
lows:

x MO x I n (7)
— D — I n (8)

The following dimensionless parameters are used
to normalize Eq. (1):

EIxEAEAOAAAR vE (5)
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Then, dimensionless boundary conditions can be
written as follows:

7y 7 plg m (10)
. .
E7) i, o plg, ™ (11)

Based orthe presented formulas,adimensionless
equation of motion can be implemented for MEMS
resonators using the following equation:

R _ _{ J— —_

(12)
By using the assumed modes methothe dimen-
sionless deflectionsolution of Eq. (12) can be intro-
duced asfollows:
7 4z B n vz, (13)
where is the ith Eigen function ofa micro-
beam that fulfills the appropriate boundary condi-
tions, “I; is the ith time-dependent deflection co-
ordinate,andi is the supposed @&greeof freedom of

the micro-beam.
To solve Eq. (12), weconsider a singledegree-of-

freedom model | , and deflection func-
tion i h is assumed to be afllows:
7 vz nuvOz (14)

The trial function is

N p@ p U . (15)

This function satisfies the boundary conditions.
Then, by substituting thepresented functionsinto
the dimensionless equation of motion and integrat-
ing from 0 to 1, the dimensionless equation of motion
changegs[22]:
OAO AO A AO AO AO

AO n (16)
O1 A 'On
where
A n AshA ¢ n Ash
A n Ash
A non nn 6n A
A

(17)

3. Solution Procedure

For the following general oscillator,
0O MO n
On 'h ATA Om m,

where u andt are the generalized dimensionless dis-
placement and dimensionless timerespectively,and
"Ais the oscillator amplitude. Based on the variational
principle, by implementing the semi-inverse [37, 38]
and He[13,39] methods, the variation parameter can
be written as

*® -6 &6 A0 (19)
where 1] X is the oscillator vibration period
and—fI "H . Thusthe Hamiltonian approach inthe

presented problem can be expressed dellows:

(18)

( 26 &0 a! (20)
Then, by defining a new function we have
20 20 &0 & (21)

By choosing any arbitrary point such as 7l
¥ ,and settingr} "I — , an approximate fre-

quencyzamplitude relationship canbe obtained.This
approach is much simplerthan other traditional
methodsand has beomewidely used[40]. The accu-
racy of this location method, however, strongly de-
pends upon the chosen location point. To overcome
the shortcomings of theEBM, a new approachbased
on the Hamiltonian one,has beensuggested 32]. Dif-
ferentiating the Hamiltonian approach leads us to
natural frequency of the system

'F(
= (22)
5 T
For greater convenience, a new functiong¢ "I , is
defined asfollows:
T
(0 go &0 A0 24 (23)

Then, for the natural frequencies of the system,
the following relation is used

— — mor— — T (24)

From Eq. (24), we can obtainthe approximate fre-
guencyzamplitude relationship of a nonlinear oscil-
lator [32, 41]. Forthe current special problem, we
havethe following Hamiltonian equation:

(6 .7-A06 AO AD

Cx A A Ao (25)
-A6 -AO -AO -AO AO
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3.1. First-order Hamiltonian approach

After satisfying the initial conditions, utilizing "l
‘A"Hi "I"Bs the trial function in Eq. 25), we obtain

06 -0 ATTD

@ oAl @ 010RI0 (26)
-0 0AINO -w 0AIT0C0

-0 0ATT® -0 6ATT® Qo

This leads tothe following:

(0 _ -1 SOEDA 'AT®

AR A . A RiA

ATAI® A ATAI® N

“ALAT@® -ALATGD
-ATAT@® AO
Then, the frequencyamplitude relationship can
be obtained fromthe following:
- o |

- T YA T YAS

™ WCA 1 PlwAd (28)
T WTA 18 WnAd
™ ¢lwA b T
Therefore, after some approximations and simpli-
fications, Eg. 28) can be solvedand the natural fre-
quency can be obtained afollows:

8 8 8 8
5 5 5 . (29)
That is approximately equal to
9
MG oA TWA thA obv A (30)
1 oo A 1l A (A

Both the VA [23] and the analytical approximate
solution [25] have the same result for this problem.

3.2. Second-order Hamiltonian approach

To improve the accuracy of thisapproach, a
higher order periodic solution was assumed ashe
time response function

O AATXD AATdoHG (31)
where the initial condition is
I A A (32)

By Substituting Eqg. (32) into Eq. (25), we can ob-
tain

(0 _ -5A AAT@®AATO
AAMI®OAATO A AOEK
cAOBOD - -A AATG® AATO (33)

-A A AT@AATAD -A AAT®
AATo® -A AATG@AATAD AOD

Subsequently the frequencyzamplitude relation-
ship can be obtained from the following equation
™ TAA T kA o0& cAAA
o080 CApA A x8T AJA & pAAA

o whbAA o8 cAA 8 LAA

™ WipAd T TAA)D

™ UVAAS T YAA

P XALA A  pa xAAA (34)
pa8l TIATA Ad P& XAAADS

o8p pAAAS T PAA S

CBTAAAL  x8& ohAAS

& WAVAAS 18 WATA S

v VAAAY 1 cAAS 1

To obtain the natural frequency, substituting Eq.
(32)into(34)as™H ‘A 'H asecondorder algebraic
equation setbecomessolvable, allowing the natural
frequency andaandb valuesto be obtainedfor vari-
ous values ofAand fj. Some of the results are listed
in Table 2.

3.3. Third-order Hamiltonian approach

A third -order time responsecan be usedfor the
micro-beam, asfollows
O AATXD AATAOO AATWLWOO (35)
where the initial condition is
b O ® (36)
Similar to the secondorder Hamiltonian ap-
proach, with some mathematical simplification, val-

ues of HTHIHT "Htan be obtained for various values
of AandV (see Table 3for examples).

4. Validation, Results, and Discussion
4.1. Computational efficiency

The nonlinear algebraic equations presented
were solved using Wolfram Mathematica software on
an Intel(R) CoreA i5-3230M CPU 2.6GHz processor,
including 6 GBof installed memory on a 64bit oper-
ating system.The required time for calculating natu-
ral frequencies was 10 seconds, 3Q40 seconds
and 3.574 minutes for fir st-, secand-, and third-order
Hamiltonian approaches,respectively. In terms of ac-
curacy and computational efficiencythe secondor-
der solution was the best.

Table 2. AAT Aparameters for different! and 6 values

, ( piu T _

6 A A
(0.3, 10) ™ oPo!l TEITTP @
(0. 4, 10) M WUL TBITMTT
(0.5, 10) ™ WPl TEIT WY
(0.6, 10) M YPYTw TEIPp W
(0.7,10) TpOQUL( TBTIOOT
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Table 3. AMAPA 1 Aparameters for different! and 6 values

_ (pfx ¢t _

' 16 A A A
(0. 3,10) ™ Yo TP (¢ TN
(0. 4, 10) MWL TAITMTT TAITITC
(0.5, 10) ™ Ywo TIMTWwe TR X
(0. 6, 10) T X YT TEIPp We TG P
(0.7, 10) TP OO TEBIOT T TAITU G

4.2. Validation

In comparison with previous works, where
higher order approximations were not used, more
accurate dynamic responssand natural frequencies
were observed.The EBM is the best criterion forsuch
comparisons. Figure 3 depicts a comparison of the
dynamic response of anicro-beam under electric ex-
citation (V = 24 Volts), with parameters "E fH

AHT "M 8 obtained with the first-, second,
and third-order Hamiltonian approaches. These
comparisons wererepeated (see Fig. 4)after chang-
ing the A value to 0.5.

Table 4 compareghe frequencies commensurate
for different parameters of the system, obtained from
the Hamiltonian method andthe EBM[22]. Exact val-
ues are also reported for some cases. Accuracy in-
creases withan increase in the order of approxima-
tions. When the order increases, more accate re-
sults are achieved. Increasinghe applied voltage or
initial amplitude leads to a greater number afrrors.
Thus, in the case of larger initial amplitude and ap-
plied voltage, higher order approximations would be

more usefulthan lower order ones
05 T T T T T T T
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T
Figure 3. Comparison of dynamic responses obtained using
higher order Hamiltonian approaches and an EBM solution ("E
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/
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e

Figure 4. Comparison of dynamic responses obtained using
higher order Hamiltonian approaches and an EBM solution ("E
FiH ! fa  8)

4.3. Phase diagram of micro-beam

Simplifying the convolution of a nonlinear system
to a pseudo-linear model can provide a useful view
on the stability and controllability of a system. For
example let usassume that a nonlinear MEMS micro
beam has a lineatwise model, as below that includes
all nonlinearities in the second part of its dynamics

w 0w o606 yw afoho (37)

A ronlinear term (- 1 1 ; 1081 ) may contain
a high level of nonlinearity because it includes space,
time, and input variables as operands. Figure 5
shows the effect of parametersAand V on the phase
plane of a system for"E fiH AHT tH

hsimulated using a secondorder Hamiltonian
method. As can be seen iRigure 5, by increasing the
order of Hamiltonian approach,the amplitude pa-
rameters (a, b, c) decreasethus, the overall ampli-
tude also decreases. Whea micro-beam resonates
near the zero point as the basal condition, a notable
reduction in the velocity of the resonator is observa-
ble. This phenomenon disappears immediately after
it passesfrom the basal condition. This means that
the dynamics of this nonlinear system also depend on
the position of the point that is being measured on
the MEMS micrebeam.
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Table 4. Comparison of natural frequencies (rad/s) for various parameters of thesystem (0 pfi ¢t

16 ¥ ¥ ¥ ¥ ¥ ¥
(0.3,0) 26. 3644 26. 3644 26. 3672 26. 3669 26. 3867 26.8372
(0. 3, 10) 24. 2526 24. 2526 24,2547 24, 2543 C B XU -

(0. 3, 20) 16. 3556 16. 3556 16. 3552 16. 3547 16. 3829 16.6486
(0.4,0) 27. 2053 27. 2053 27. 2214 27. 2195 27. 2759 -
(0. 4, 10) 25. 0500 25. 0500 25. 0639 25. 0621 25. 1217 -
(0. 4, 20) 17.0187 17.0187 17. 0238 17. 0219 17.1023 -
(0.5,0) 28. 0019 28. 0019 28. 0657 27. 0605 28. 1758 -
(0.5, 10) 25. 7611 25. 7611 25. 8203 25. 8155 25. 9365 -
(0. 5, 20) 17. 3839 17. 3839 17. 4270 17. 4241 17. 5835 -
(0.6,0) 28. 5579 28. 5579 28. 7564 28. 7499 28. 9227 28.5382
(0.6, 10) 26. 1671 26. 1671 26. 3600 26. 3562 26. 5324 -
(0. 6, 20) 17. 0940 17. 0940 17. 2901 17. 3013 17.5017 18.5902
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Figure 5. Effect of Aand V parameters on the phase plan an electrostatically actuated micro-beam with 1 h
of the system for "E FH AHT *H  simulated us- HE hand various values of A

ing a second-order Hamiltonian approach

NandA. Furthermore, it can be observed that the fre-
quency increases with increasing . Resultsobtained
by the secondorder Hamiltonian approachare close
to the EBM solutian, especially for low amplitudes
and values.

4.4. Free vibration

Figure 6 shows the effect ofEand parameters
on natural frequency. It can be observed that the fre-
guency is proportional to N. However, it decreases
when initial amplitude (A) increases. The seconabr-
der Hamiltonian approachhas nearly same response
as that ofthe EBM solution, even for higher values of
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Figure 7 shows the effect of applied voltage on the
natural frequency ofan electrostatically actuatedmi-
cro-beam. Itis apparent that the frequency is de-
creased withanincrease in voltageThe results of the
secondorder Hamiltonian approach are extremely
close tothe EBM solution but they have considerable
discrepancies interms of high amplitudes and ap-
plied voltages.

The ronlinear behavior ofthe system leads toan
abrupt fall in high applied voltage.The matural fre-
guency decreases dramaticallyat high voltages.
However, natural frequency also increases with an
increasein amplitude. This is due to thefollowing ef-
fect: when the initial amplitude increases, the equiv-
alent linear system of the electrostatically actuated
micro-beam is hardened It was also observed that
for higher amplitudes, the discrepancy is less than
that of lower values.

Several simulations and plots can be introduced
to facilitate fundamental design requirements before
any manufacturing process. Based on the presented
examples, the proposed nonlinear model based am
Hamiltonian approach is efficient andsufficiently ac-
ceptable to determine the effects of parameters on
the natural frequency andthe phase plane diagram of
an electrostatically actuatedmicro-beam.

Figures 8 and 9 show the effect othe thickness of
an electrostatically actuatedmicro-beam on the nat-
ural frequencyat various initial amplitudes when ge-
ometrical and structural lamina properties at a fiber
volume fraction of 0.67 are choserfsee Table5). As
demonstrated clearly, natural frequency decreases
with anincreasein the thickness ofa micro-beam.
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z 15| ~EF-EBM(A=04)
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Figure 7. Effect of fj parameter on the natural frequency
of an electrostatically actuated micro-beam with "E
h , and various values of A

20

Table 5. Nominal inputs and standard deviations for themicro-
switch parameters

Parameter Value
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Figure 8. Variation of natural frequency due to the thick-
ness of the micro-beam, thickness (h), where the applied
load is parallel to the fiber direction
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Figure 9. Variation of natural frequency due to the thick-
ness of the micro-beam, (h), where applied load is perpen-
dicular to the fiber direction

5. Sensitivity analysis

When a sensor or actuator is designed based on
micro-beams, recognizing the parameters can help
the designer to obtain the best resolution and accu-
racy. This issue can baddressedby conducting SA
on electrostatically actuatedmicro-beams. ThusSA
of the model with respect to the model parameters
is a key stepSAcan classifythe values of various sig-
nificant parameters according to the proposed re-
search preferenceq43].

Various parameters contribute to the final re-
sponses in any nonlinear system under considera-
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tion. Parametersinclude the length i, width "H thick-
nessih 91 01 ¢80
cro-beamon the one hand ancdhe initial gap "H, elec-
trostatic load fj, HAHT "Hon the other. This model
requires the identification of many parameters and
inputs at varying levels of sensitivity, andvarious SA
methods can be used to achievéhis requirement.
The Sobol method isafamous SA approach based on
variance that is widely used in various studes and
scientific fields, such as hydrogeology, geotechnics,
ocean engineering, biomedical engineering, hybrid
dynamic simulation, and electromagnetism.

5.1. Simple form of sensitivity

A simple form ofdetermining sensitivity for natu-
ral frequency respecting these parameters could be
achieved by differentiating the natural frequency
with respect to the parameters and plotting the re-
sults (e.g.,Figure 10). Below, ] represents thesen-
sitivity of  with respect to the variation of parame-
ter

Y — (38)
Using the parameters introduced inTable 5, Figs.

10 to 13 ae presented to depict variatiors in sensi-
tivity with respect to various parameters. Figure 10
shows the sensitivity ofan electrostatically actuated

micro-beam with respect to parameter . It can be
observed that sensitivity decreases with increases in

T

1!

parameter . Since lﬂ in the presented sen-

sitivity plot , this means that if 'K increases ori de-
creases, thanicro-beam reacts les®asilyto external
excitations. Increasing the thickness increases the
system rigidity, which makes the micrebeanless
sensitive. In contrast, decreasing thegapbetween the
beam and the electrode®f an electrostatically actu-
ated micro-beamresults in alower excitation output.

[H
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Figure 10. Sensitivity plot of an electrostatically actuated
micro-beam with respect to the variation of parameter
with "E hnA hand various amplitudes

Figure 11 depicts micro-beam sensitivity versus

i T AOI OOhamAl A (Ghe &terddl Ibad. WithOnkréd=d extér &l loads, sen-

sitivity decreases because dhe rigidity . The rigidity
increases due to system hardeningwhich iscaused
by higher external loads.

Figure 12 showsa sensitivity plot of a micro-
beamwith respect to the applied voltage. By applying
more voltage, a less-sensitive sensor and actuator
can beachieved. Although more sensitivity is a good
option for low applied voltages, supplementary
equipment for detecting and exciting the system
would be extremely challenging. Thereforeit is not
suggested for practical purposes.

In Figure 13, asensitivity plot of a micro-beam
with respect to the modulus of elasticityis shown.
The modulus of elasticity can be consideredo be
about 700 GPa. Greater hardness leads togreater
sensitivity, so any approach that increases the stiff-
ness ofa micro-beamimproves its efficiency. Carbon
fiber reinforced nanostructures improve the electro-
mechanical properties[44].
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Figure 11. Sensitivity plot of an electrostatically actuated
micro-beam with respect to the variation of parameter "E
with 3] hand various amplitudes
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Figure 12. Sensitivity plot of an electrostatically actuated
micro-beam with respect to the variation of parameter V
with "E h ,and various amplitudes
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Figure 13. Sensitivity plot of an electrostatically actuated
micro-beam with respect to the variation of parameter A
with various amplitudes

5.2. The Sobol method of global sensitivity

The Sobol method for nonlinear models is used
here to achieve an optimal design. This method was
used to investigate the effects o geometrical pa-
rameter on the natural frequency when all other pa-
rameters are changing at the same time. The inputs
are changed, and the effect of each one orthe model
output is analyzed.

For nonlinear mathematical models with numer-
ous inputs, it is often difficult to anticipate there-
sponse of the model output to changes in the inputs.
Complicated interactions of physical processes mean
that varying one input parameter at a time does not
adequately characterize the range gbossible model
outputs, although a one-at-a-time analysis ma be
valuable as a preliminary screening exercise. A com-
prehensive SA must examine the response of the
model to changes in all parameters across their range
of values; this is known as globabA

Between different general sensitivity analyses,
variance-based methods aregaining the mostatten-
tion. In these methods, the sensitivity index is com-
puted as the share of each parameter in the overall
output variance of the model. The Sobol method [45]
is an independent generaSAmethod based on vari-
ance analysis.

We consider a computer modef,, and thus, this
relation can be written as follows:

® "QohoB o, (39)
where n is the number of independent parame-
ters.

The input independent parameter region should
AA AAOGAOI ET AA
method:

AYN) ® ® NQ pBr, (40)

AO A& 111x0

where 6! ' fand 6/ "@re the minimum and maxi-
mum values foro;, respectively.

The Sobol sensitivity indices are ratios of partial
variances to the total variance. We cansubdivide
them into partial variances of increasing dimension-
ality:

w®d Bw BB o E wg, (41)
where for any inputi, B'iI fj; is called its first-order or
main effect sensitivity index,B{ B} ; fj; jincludes all
the partial variances of interaction of two input pa-
rameters, and so on. B

The representation of functionr) is derived from
the sum of the following functions:

QoM Q B Qo

B Q o E (42)

"Qgn OO o,
where "His constant and is determined agollows:

Q06000 (43)

Sobol showed that the decomposition of Eq. (25)
is unique. Also, all terms of the mentioned equation

can be evaluated vigahe following multidimensional
integrals:

96 Q0 8 Qo (44)
"Q A Rl “Q B ]\Q A}
oho ® (45)
8 Qo

where "Hh ;' HT "M ; show the integration overall
the variables excluding 6; and &, respectively.
Hence, for higherorder terms, a continuous formula
can be obtained. In the sensitivity indices based on
variance,the total variance of Hb ,f is expressedas

® QoQe Q (46)

Partial variances are computed as follow:
© g Qgr O B Qo Q (47)

According to Eq. @1), the sensitivity measures
" ngr are given by
OFBR N
Yiwi - hop R E 0 (48)

. .The measure ofthe first order ny; evaluates the
Bitributtol 8 thé GaliatioP& B, to thé Bhl vaiO
ance of YThe measure othe second orderofr), gval-
uates the contribution of the interaction ofo; and o;
on the output, and so on.

U APDPI UET C
electrostatically actuatedmicro-beam parameters on
the frequency ofthe systemcanbe obtained.The first
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step in SA is to determine the ranges @fie model in-
puts. Defining the probability distribution of inputs
requires the use of samplebased methods é.g., a
variance-based method or the Monte Carlo SA
method). How the input parameters are chosenand
how their ranges are determined basically depend
on the objectives ofthe SA. In this study, we have an-
alyzed four dimensionless parameters
(ARER AHT Y to predict the influence of various
parameters of an eledrostatically actuated micro-
beam.

5.2.1 Steps for implementation

3TAT1 80 Al ¢i OEOE iby theé¥dl-
lowing steps:

1. Select the total number of simulations to be per-
formed.

2. Select the parameters foBA

3. Determine ranges for tesvariables.

4. Choose a distribution for each of the parameters.
In this case, a uniform distribution is chosen for all
four parameters.

5. Calculate the variance of the parameters usirieg.
(47).

6. Compute the partial variance or first order effects
for each parameter by fixing the values of that pa-
rameter and varying the remaining parameters.

7. Calculate the totalorder index of the parameters
using Eq.(48).

8. Sort the parameters according to their sensitivi-
ties.

Figure 14 shows the effects oflimensionless pa-
rameters on the natural frequency including Youngd O
modulus, an axial force toward the beam, applied
voltage, and the ratio of the gap betweenthe beam
and the electrodes to the thickness of the beanyia
the Sobol method. As is observable, by increasing the
applied initial amplitude, the effects of different pa-
rameters changeand at higher frequenciesthe term

( I—H ) has thegreatestinfluence onthe natural
frequency.

In clamped-clamped beams,the abovementioned
ratio (beamzelectrode gap to beam thicknessgxerts
the greatestinfluence onthe natural frequency, and
the length of the beams has the secordreatest influ-
ence on this frequency. The gplied voltage and
Youngd @odulus are effective on fequencies at low
amplitudes, butthese effectscan be ignored at high
amplitudes. The axial force also has an ignorable in-
fluence onthe frequency.

6. Conclusion

The ensitivity of a micro-switch containing a
doubly clamped micro-beam with lengthi, width "H
and constant thicknessh ("H i ); effective modu-
lus A initial gap "HMand electrostatic applied voltage

f is studied by usinga higher order Hamiltonian ap-
proach. A nonlinear partial differential equation of
the transverse motionresulting from mid-plane de-
formation has been expressedand the normalized
motivating force has been calculatedased onelec-
trostatic excitation. A dimensionless equation of mo-
tion has been derived based on the variational prin-
ciple. By implementing a semiinverse method and
Agpi TEOQOET C (A38O0 1 AOET An
amplitude relationship has been obtained. Differenti-
ating the Hamiltonian approach reveals the natural
frequency of micro-switches. The overall results of
this §tud?/ arelisted below.

OOl T AOEUAA
6.1. Comparisons
1. The VA and the analytical approximate solution
had the same resultdor this problem.
2. The time required for calculating natural frequen-
cies using the proposed specific computational plat-
form was 5z10 seconds, 3@40 seconds and 3.54
minutes for first-, second, and third-order Hamilto-
nian approaches, respectivelyThe secondorder so-
lution was the most efficient computationally andin
terms of accuracy.
3. The dbtained results have been validated in com-
parison with the EBM, in which higher order approx-
imations are neglected.
4. By increasing the order of approximationthe ac-
curacy of the proposed methodncreases.
5. Increasingthe applied voltage or initial amplitude
leads to more errors.Thus,in the case of higherin-
itial amplitude and applied voltage, higher order ap-
proximations are essential.

6.2. Natural frequency calculations

1. The natural frequency increasesas N increases.
However, it decreasesn accordancewith anincrease
ofthe initial amplitude ( A). Nevertheless thesecond
order Hamiltonian approach producesan extremely
close response tahat of the EBM solution, even for
higher values ofN and higher amplitude. Natural fre-
quency also decreases with amplitude increasing.
2. The natural frequency ingeases with increasing
values of . Results of the secon@rder Hamiltonian
approach are close to the EBM solution except for
high amplitude and values. The natural frequency

also decreases as the voltage increases. The results of

the secondorder Hamiltonian approach are ex-
tremely close to the EBM solution aside from consid-
erable discrepancies in high amplitudes and voltages.

Al
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Figure 14. Pie chart diagrams of Sobol’s sensitivity analysis (SA) of an electrostatically actuated micro-beam with respect to the variation
of ARER AHT fHparameters with various amplitudes
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1. The ronlinear behavior of the system leads toan
abrupt fall in high applied voltages.The natural fre-
quency decreases dramaticallyat high voltages and
alsodecreasesat low voltages.

2. The natural frequency increases withan increase
in the modulus of elasticity and decreases with in-
creasing thickness ofthe micro-beam; however,
thesevariations are not significant

6.3. Sensitivity analysis

1. Sensitivity decreases when increases. As

EBDN GGY — , the presented sensitivity plot

(i.e. Fig. 10)means that if i increases ori decreases,
the micro-beam reacts less to external excitations. By
increasing the thickness, rigidity also increases,
which leads to less sensitivity ofthe micro-beam.
However, decreasing thegap between the beam and
the electrodesan of electrostatically actuatedmicro-
beam results ina lower excitation output.

2. With increased external loads,the sensitivity de-
creases because dhcreasedrigidity ; the rigidity in-
creases due to system hardening caused bycreased
external loads.

3. By applying more voltage a less-sensitive sensor
and actuatorcan be achieved. Althougltgreater sen-
sitivity seems to bea good option for lowlevels ofap-
plied voltage, providing supplementary equipment
for detecting and exciting the system would be ex-
tremely challenging therefore, it is not suggested for
practical purposes.

4. By the Sobol method, it was shown that at higher

frequencies, thevariable (¢ — ) has thegreatest

influence on the natural frequency. In clampedz
clamped beams, the ratio of the gap between the
beam andthe electrodes to the thickness of the beam
has the most influence orthe natural frequency, fol-
lowed by the length of the beams(ranked second
most influential) . The axial force also has an insignif-
icant effect on frequency.
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