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beams are carried out using a quasi-3D polynomial shear and normal deformation theory. 
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are employed to obtain displacements and stresses for the simply supported beams, which 
are subjected to sinusoidal and uniformly distributed loads. Results are compared with 
those derived using other higher-order shear deformation theories. The comparison vali-
dates the accuracy and efficiency of the theory put forward in this work. 
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1. Introduction    
 In the last few decades many numerical and 
classical approaches based on approximate beam 
theories have been developed by various research-
ers for the analysis of isotropic and anisotropic 
beams. The well-known classical beam theory (CBT) 
developed by Euler and Bernoulli [1] is the simplest 
theory for the examination of beams, but its applica-
tion is constrained by its failure to account for the 
effects of shear and normal deformations. The first-
order shear deformation theory (FSDT) of Timo-
shenko [2] is regarded as an improvement over CBT, 
but it does not satisfy shear stress conditions on the 
top and bottom surfaces of a beam and requires a 
shear correction factor for appropriate explanations 
of strain energy due to shear deformation. To elimi-
nate the limitations of CBT and FSDT, researchers 
developed higher-order shear deformation theories 
(HSDTs). Reddy [3], for example, developed a widely 
known third-order shear deformation theory for the 
bending analysis of isotropic and anisotropic beams. 
Sayyad and Ghugal [4] established a hyperbolic 
shear deformation theory for the examination of 

isotropic beams, with consideration for the com-
bined effects of bending rotation and shear rotation. 
Ghugal and Sharma [5] applied a hyperbolic shear 
deformation theory, and Ghugal and Waghe [6] used 
a trigonometric shear deformation theory (TSDT) 
for the analysis of isotropic beams at various 
boundary conditions. Sayyad [7] compared various 
shear deformation theories for investigations into 
the bending and free vibration of isotropic beams.  
  Two or more inherently and chemically distinct 
components—that is, fibers and matrices—form a 
material called composite material. Composite ma-
terials are characterized by improved strength-to-
weight and stiffness-to-weight ratios. Nowadays, the 
use of beams made of composite materials is in-
creasing in fields such as aerospace and aeronauti-
cal engineering, navigation, and construction. Ac-
cordingly, many researchers have carried out stud-
ies on the bending behavior of such beams. Carrera 
[8] developed a unified formulation for the analysis 
of laminated composite beams, and Catapano et al. 
[9] extended this formulation to probe into cross-
ply laminated composite beams. Chen et al. [10] 
constructed a stress model for the FSDT-based anal-
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ysis of laminated composite beams. Gherlone [11] 
conducted a comparative study of laminated com-
posite and sandwich beams by using the zigzag 
function in an equivalent single layer theory. Sayyad 
et al. [12] carried out a flexural analysis of fibrous 
composite beams by using different refined shear 
deformation theories based on displacement. Nanda 
et al. [13] proposed a spectral finite element model 
by using zigzag theory, and Sayyad et al. [14] pre-
sented a simple TSDT for the bending analysis of 
laminated composite and soft-core sandwich beams. 
Vo and Thai [15] performed a bending analysis of 
symmetric and anti-symmetric cross-ply laminated 
composite beams by adopting a two-variable shear 
deformation theory, which was further extended by 
Sayyad et al. [16] for the bending analysis of lami-
nated composite and soft-core sandwich beams. 
Chakraborti et al. [17] put forward a finite element 
model grounded in zigzag theory to examine lami-
nated sandwich beams with a soft core. Tonelli et al. 
[18] carried out a bending analysis of sandwich 
beams by using an HSDT. Ghugal and Shikhare [19] 
obtained a general solution for the deflections and 
stresses of sandwich beams by using a TSDT, and 
Pawar et al. [20] analyzed the bending of sandwich 
and laminated composite beams by using a higher-
order shear and normal deformation theory. 

The use of beams and plates made of functional-
ly graded materials (FGMs) in different engineering 
fields has recently increased. In a functionally grad-
ed beam, material properties gradually change along 
the spatial direction, thus generating a higher re-
sistance against temperature than that achieved 
with conventional materials. Giunta et al. [21] ana-
lyzed functionally graded beams by using classical 
and advanced shear deformation theories. Li et al. 
[22] formulated a general solution for the static and 
dynamic analysis of functionally graded Timoshen-
ko and Euler beams by extending Levinson’s beam 
theory. Pendhari et al. [23] applied a mixed semi- 
analytical model for the bending analysis of FGM 
narrow beams under plane stress conditions. With 
consideration for warping and shear deformation 
effects, Benatta et al. [24] inquired into the static 
analysis of functionally graded beams. Kadoli et al. 
[25] and Kapuria et al. [26] developed a new HSDT 
for the bending analysis of FGM beams. A static and 
dynamic analysis of functionally graded Timoshen-
ko and Euler–Bernoulli beams was carried out by Li 
[27], with the author considering rotary inertia and 
shear deformation effects. Ying et al. [28] developed 
exact solutions for the bending analysis of function-
ally graded beams resting on an elastic foundation. 
Sayyad and Ghugal [29] recently developed a unified 
shear deformation theory for the analysis of func-
tionally graded beams.     

 

1.1 Contributions of the current work 
 Transverse shear and normal deformations play 
an important role in the accurate prediction of the 
structural behavior of beams and plates made of 
advanced composite materials. Therefore, any 
refinements to CBTs are generally meaningless 
unless the effects of transverse shear and normal 
strains are taken into account. Such effects are 
neglected in Euler and Bernoulli’s CBT [1], FSDT [2], 
Reddy’s parabolic shear deformation theory (PSDT) 
[3], Touratier’s TSDT [30], Soldatos’ HSDT [31], 
Karama et al.’s exponential shear deformation 
theory (ESDT) [32], and Thai and Vo’s theory [33]. 
    Theories that consider the effects of transverse 
shear and normal deformations are called quasi-3D 
beam theories. Some of the quasi-3D beam theories 
discussed in the literature are the non-polynomial 
shear deformation theories of Sayyad and Ghugal 
[34], Nguyen et al. [35], Yarasca [36], Mantari and 
Canales [37], and Osofero et al. [38] and the 
polynomial shear deformation theory of Vo et al. 
[39]. A recent initiative by Sayyad and Ghugal [40] 
involved a review of various beam theories available 
in the literature for the analysis of isotropic and 
anisotropic beams. 
 The use of a non-polynomial shear strain func-
tion is computationally more difficult than the adop-
tion of a polynomial shear strain function. The pre-
sent study therefore extends Murphy’s [41] poly-
nomial shear deformation theory by accounting for 
the effects of thickness stretching (i.e., normal de-
formation). The quasi-3D theory resulting from this 
extension is computationally simpler than the other 
quasi-3D theories cited above. In the theory pro-
posed in the current work, both axial and transverse 
displacements are functions of x and z coordinates. 
The theory satisfies the transverse shear strain con-
ditions on the top and bottom surfaces of a beam 
without the use of a shear correction factor. Govern-
ing equations are obtained by using the principle of 
virtual work and applying a fundamental lemma of 
calculus. Closed-formed solutions are derived using 
Navier’s solution for simply supported boundary 
conditions. The accuracy of the theory is confirmed 
by applying it to bending analyses of advanced com-
posite beams made of isotropic materials, fibrous 
composite materials, and FGMs. Numerical results 
are obtained for the simply supported beams, which 
are subjected to sinusoidal and uniformly distribut-
ed loads. The findings are then compared with those 
in the literature for validation. 
 

2. Problem Formulation 
2.1 Beam under consideration: Primary character-
istics 
 Let us consider an advanced composite beam of 
length L and cross-section area (b × h) in right-hand 
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Cartesian coordinate systems. The beam occupies 
region 0 ≤ x ≤ L in the x-direction, region -b/2 ≤ y ≤ 
b/2 in the y-direction, and region -h/2 ≤ z ≤ h/2 in 
the z-direction. For simplicity, the width of the 
beam’s cross-section is assumed to be unity. The 
beam is made of advanced composite materials, and 
its top surface is subjected to transverse loading. 

 
2.2 Kinematics and constitutive relations 
 Assuming that u is the displacement of any 
point in the x-direction and w is the displacement of 
any point in the z-direction, the following displace-
ment field is derived for the third-order shear and 
normal deformation theory used in this work: 
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where u0 and w0 are the displacements of the neu-

tral axis in the x- and z-directions, respectively. x  

and z  denote the shear slopes. The non-zero 

strains associated with the theory are obtained from 
the linear theory of elasticity. 
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where ‘,x’ indicates the derivative with respect to x. 
The constitutive relations for advanced composite 
beams are also obtained from the linear theory of 
elasticity. 
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where ijQ are the reduced stiffness coefficients.  

 

 
Figure 1. Beam under consideration. 

 
 
 
 

These can be expressed for different materials as 
follows: 

(a) Isotropic material     
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where E denotes the Young’s modulus, G represents 
the shear modulus, and  is the Poisson’s ratio. 

(b) Fibrous composite material    
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where E1 and E3 are the Young’s moduli; µ13 and µ31 
are the Poisson’s ratios; and G13 is the shear modu-
lus.      

(c) FGM 
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where, 

   
1

2

k

m c m

z
E z E E E

h

 
    

 
                             (7)  

where Em and Ec are the Young’s moduli of metal 
and ceramic, respectively, and k is the volume frac-
tion exponent, whose value varies from zero to in-
finity. The beam is fully ceramic when k is equal to 
zero and fully metallic when k is infinity.     
 
2.3 Governing differential equations of equilibrium 
 The governing differential equations of equilib-
rium can be derived by using the principle of virtual 
displacements thus: 
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Substituting the values of stresses and strains from 
Eqs. (2) and (3) into Eq. (8) and integrating these by 
parts yield the following governing differential 
equations: 
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where the stiffness coefficients are as follows: 
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In this manner, the variationally constant governing 
differential equations that underlie the theory de-
veloped in this study are obtained. 
 

3. Closed-Form Solution 
 Following Navier’s solution procedure, the fol-
lowing solution form is assumed for unknown vari-

ables  0 0, , ,x zu w   that satisfy simply supported 

boundary conditions: 
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where , , ,m m xm zmu w    are the arbitrary parameters 

to be determined subject to the condition that the 
solution in (13) satisfies differential equations (9)–
(12). Transverse load q is also expanded in the Fou-
rier sine series as  
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Substituting the solution form from Eqs. (14) and 
(15) into governing equations (9)–(12) derives  
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where [K] is the stiffness matrix,   is the vector of 

unknowns, and  f is the force vector. 
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4. Illustrative Cases 
 The developed quasi-3D polynomial shear and 
normal deformation theory is applied in the bending 
analyses of advanced composite beams subjected to 
single sinusoidal and uniformly distributed loads. 
To confirm the accuracy and validity of the theory, 
the following cases are solved:  

Case 1: Bending analysis of isotropic beams 

Case 2: Bending analysis of 0°/90° cross-ply 
laminated composite beams 

Case 3: Bending analysis of 0°/90°/0° cross-ply 
laminated composite beams 

Case 4: Bending analysis of 0°/core/0° sand-
wich beams 
Case 5: Bending analysis of FGMs 

 The following material properties are used for 
the detailed numerical study: 
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 The numerical results, which are expressed in 
non-dimensional form, are presented in Tables 1–6 
and Figs. 2–13. The various non-dimensional pa-
rameters used are as follows: 

(a) Isotropic, laminated composite, and sand-
wich beams 
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(b) FGMs 
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Case 1: Bending analysis of isotropic beams 
 In this case, the displacements and stresses of 
isotropic beams subjected to single sinusoidal and 
uniformly distributed loads are obtained for aspect 
ratios (L/h) of 4 and 10. The non-dimensional re-
sults are presented in Table 1. The beams are made 
of an isotropic material MAT 1 (i.e., steel). The find-
ings are compared with the numerical results de-
rived with HSDT [4], PSDT [3], FSDT [2], and CBT 
[1]. Table 1 shows that the transverse displacement 
obtained using the proposed theory is of a higher 
value for an aspect ratio of 4 and produces the exact 
result for an aspect ratio of 10 compared with the 
values obtained with PSDT [3]. The stresses ob-
tained for aspect ratios 4 and 10 are in excellent 
agreement with those derived with other theories 
for single sinusoidal loads. In the case of isotropic 
materials, the axial stress is zero at the neutral axis 
and reaches its maximum at the top and bottom sur-
faces of the beams. By contrast, the transverse shear 
stress is at its maximum at the neutral axis and zero 
at the top and bottom surfaces of the beams. CBT [1] 
underestimates the deflections and stresses because 
of this theory’s disregard of transverse shear and 
normal deformations. The same pattern of results is 
observed for the beam subjected to a uniformly dis-
tributed load. Overall, the proposed theory gener-
ates excellent results for isotropic beams because of 
its inclusion of the effects of transverse normal de-
formations. 
 
Case 2: Bending analysis of 0°/90° cross-ply lam-
inated composite beams 
 Table 2 presents the results of the comparison 

of displacements and stresses in two-layer (0°/90°) 
anti-symmetric laminated composite beams sub-
jected to single sinusoidal and uniformly distributed 
loads. The layers are of equal thickness, expressed 
as h/2, where h is the overall thickness. The beams 
are made of fibrous composite materials (MAT 2). 
The through-thickness variations of axial displace-
ment, axial stress, and transverse shear stress in the 
two-layer beams are shown in Figs. 2–4. The numer-
ical results are compared with those presented by 
Reddy [3], Soldatos [31], Karama et al. [32], and 
Mantari and Canales [37] and those derived using 
FSDT [2] and CBT [1]. Table 2 indicates that the 
transverse displacements obtained using the pro-
posed theory are in excellent agreement with those 
derived with the other quasi-3D polynomial and 

non-polynomial higher-order theories. FSDT and 
CBT respectively overestimates and underestimates 
the transverse displacements because of their ne-
glect of transverse shear and normal deformations. 
Compared with the values derived with the other 
higher-order theories, FSDT and CBT generate iden-
tical underestimated axial stresses. Transverse 
shear stresses are obtained using equations of equi-
librium to ascertain stress continuity at the layer 
interface. Figs. 3 and 4 show that the stresses are at 
their maximum level at the 0° layer—a result at-
tributed to the high elastic modulus along the direc-
tion of the fiber in the materials. The stresses are at 
their minimum at the 90°  layer.  
 
Case 3: Bending analysis of 0°/90°/0° cross-ply 
laminated composite beams 
 Table 3 illustrates the comparison of the non-
dimensional displacements and stresses in three-

layer (0°/90°/0°) cross-ply laminated composite 
beams subjected to single sinusoidal and uniformly 
distributed loads. The overall thickness (i.e., h/3) is 
equally distributed among all the layers of the 
beams, which are made of fibrous composite mate-
rials (MAT 2). The numerical results are compared 
with those presented in the literature [1–3, 31, 32, 
37]. Table 3 reveals that the transverse deflection of 
a three-layer laminated beam is less than that of a 

two-layer (0°/90°) laminated beam. This finding is 
ascribed to the increase in stiffness along the length 
of the beams. The displacements and stresses ob-
tained using the quasi-3D theory put forward in this 
work excellently agree with those derived through 
the other HSDTs. FSDT and CBT provide overesti-
mated numerical results. The through-thickness 
variations of axial displacement and stress are 
shown in Figs. 5 and 6. The figures indicate that be-
cause the laminated beams are symmetric, the axial 
displacement and stress are zero at the neutral axis 
(i.e., 90° layer) and at their maximum at the top and 
bottom surfaces of the beam (i.e., 0° layer). The 
through-thickness variations of transverse shear 
stress obtained using the equations of equilibrium is 
shown in Fig. 7.  
 
Case 4: Bending analysis of 0°/core/0° sandwich 
beams 
 Sandwich composite beams are constituted by 
hard face sheets and soft cores. The modulus of the 
core materials is significantly lower than that of the 
face sheets. The main benefit of using a sandwich 
beam lies in its high bending stiffness and high 
strength-to-weight ratio. Because of these attractive 
properties, sandwich beam-based structures have 
been widely used in many industries.   
 The proposed theory is also validated on the 
basis of a bending analysis of sandwich beams. The 
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comparison of the numerical results for displace-
ment and stresses in 0°/core/0° sandwich beams 
subjected to single sinusoidal and uniformly dis-
tributed loads is shown in Table 4. Values are ob-
tained for aspect ratios of 4, 10, and 100. The thick-
ness of the face sheets is 0.1 h, whereas that of the 
core is 0.8 h. The face sheets are made of MAT 2, 
whereas the core is composed of MAT 3. The numer-
ical results are compared with those presented by 
Reddy [3], Soldatos [31], and Karama et al. [32] and 
those obtained by FSDT [2] and CBT [1]. Table 4 
indicates that the central deflection and stresses 
obtained in the central core are less than those at 
the top and bottom face sheets. This finding is at-
tributed to the fact that the core is made up of soft 
transversely isotropic material. The through-
thickness variations of axial displacement and stress 
are shown in Figs. 8–10. As seen in Fig. 9, minimal 
axial stress is experienced by the core material, thus 
reflecting that the soft core is resistant only to 
transverse shear stress. 
 
Case 5: Bending analysis of functionally graded 
beams 
 Tables 5 and 6 show the comparison of non-
dimensional displacements and stresses in func-
tionally graded beams subjected to single sinusoidal 
and uniformly distributed loads, respectively. The 
results on displacements and stresses are obtained 
for various values of the power-law index (i.e., k = 0, 
1, 2, 5, and 10). When k = 0, a beam is fully ceramic. 
The deflection obtained using the proposed theory 
is in good agreement with that derived with other 
higher-order theories. The stresses obtained using 
the proposed theory are in excellent agreement with 
the increasing value of k. An increase in the power-
law index reduces the stiffness of the functionally 
graded beams, thereby elevating the displacements 
and axial stresses. Transverse shear stress decreas-
es with decreasing stiffness of a beam (i.e., increased 
power-law index). The through-thickness variations 
of axial displacement and stress are shown in Figs. 
11–13. The proposed theory yields a parabolic dis-
tribution of transverse shear stress across the depth 
of the beams and satisfies the zero shear stress con-
ditions on the top and bottom surfaces of the beams 
(Fig. 12). The axial stress is not zero at the neutral 
axis, and the transverse shear stress is not at its 

maximum at such axis. This result is due to the fact 
that the material properties continuously vary 
throughout the thickness of the beams.  
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Figure 2. Through-thickness variations of u  in 0°/90° laminat-

ed beams subjected to single sinusoidal and uniformly distribut-
ed loading at L/h = 4. 
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Figure 3. Through-thickness variations of x  in 0°/90° laminat-

ed beams subjected to single sinusoidal and uniformly distribut-
ed loading at L/h = 4. 
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Table 1. Non-dimensional displacements and stresses in isotropic beams (MAT 1) 

 
Theory 

SSL UDL 
h/L u  w  x  EE

zx  u  w  x  EE

zx  

0.25 Proposed 12.248 1.445 9.960 1.897 15.830 1.816 12.135 2.893 

 HSDT [4] 12.704 1.427 9.977 1.896 16.486 1.804 12.254 2.882 

 PSDT [3] 12.715 1.429 9.986 1.895 16.504 1.806 12.263 2.908 
 FSDT [2] 12.385 1.430 9.727 1.910 16.000 1.806 12.000 1.969 

 CBT [1] 12.297 1.232 9.727 1.900 16.000 1.563 12.000 - 
0.1 Proposed 193.20 1.261 60.98 4.769 249.51 1.599 75.078 7.353 
 HSDT [4] 194.31 1.263 61.04 4.769 251.23 1.601 75.259 7.312 
 PSDT [3] 194.34 1.264 61.05 4.769 251.27 1.602 75.268 7.361 
 FSDT [2] 193.51 1.264 60.79 4.769 250.00 1.602 75.000 4.922 
 CBT [1] 192.95 1.232 60.91 4.769 250.00 1.563 75.000 - 
 

 
Table 2. Non-dimensional displacements and stresses in 0°/90° cross-ply laminated composite beams (MAT 2) 

h/L Theory SSL UDL 

u  w  x  EE

zx  u  w  x  EE

zx  

0.25 Proposed 1.7059 4.4409 33.608 2.9796 2.2524 5.5768 40.2535 5.0407 
 PSDT [3] 1.7100 4.4511 33.592 2.9768 2.2580 5.590 40.2390 5.0236 
 HSDT [31] 1.6930 4.4039 33.253 2.9513 2.2299 5.533 39.9207 4.8144 
 ESDT [32] 1.7450 4.2305 34.264 2.8484 2.3085 5.316 40.9211 5.8468 
 Semi-Analytical [23] --- 4.7080 30.019 2.7192 --- 5.900 36.6784 3.8488 
 HSDT-N1 [37] 1.7066 4.4411 33.5966 2.4774 2.2613 5.5824 40.1544 3.5557 
 HSDT-N2 [37] 1.7068 4.4378 33.6027 2.4794 2.2620 5.5789 40.1618 3.5522 
 HSDT-N3 [37] 1.7179 4.3931 33.8186 2.5192 2.2745 5.5245 40.3980 3.5999 
 FSDT [2] 1.4210 4.7966 27.904 2.9468 1.8360 6.008 34.4272 4.5567 
 CBT [1] 1.4210 2.6254 27.904 2.9468 1.8360 3.329 34.4272 4.5567 
0.1 Proposed 22.889 2.9158 180.38 7.3604 29.735 3.688 221.260 11.548 
 PSDT [3] 22.942 2.9225 180.18 7.3780 29.840 3.696 221.017 11.544 
 HSDT [31] 22.901 2.9161 179.86 7.3679 29.7390 3.688 220.692 11.421 
 ESDT [32] 23.028 2.8864 180.86 7.3247 29.9363 3.652 221.704 10.698 
 Semi-Analytical [23] ---- 2.9611 176.53 7.2550 --- 3.744 217.330 10.738 
 HSDT-N1 [37] 23.1462 2.9495 181.5245 6.2994 30.0738 3.7312 222.6837 9.5100 
 HSDT-N2 [37] 23.1429 2.9489 181.6364 6.3082 30.0701 3.7304 222.8253 9.5148 
 HSDT-N3 [37] 23.1769 2.9427 181.7649 6.4236 30.1162 3.7229 222.9276 9.6752 
 FSDT [2] 22.206 2.9728 174.40 7.3670 28.6882 3.758 215.170 11.391 
 CBT [1] 22.206 2.6254 174.40 7.3670 28.6883 3.329 215.170 11.391 
0.01 Present 22166 2.6229 17468 73.433 28638.4 3.326 21549.7 113.57 
 PSDT [3] 22214 2.6285 17447 73.675 28701.2 3.333 21524.1 113.94 
 HSDT [31] 22213 2.6283 17446 73.670 28699.0 3.333 21522.6 113.92 
 ESDT [32] 22214 2.6281 17447 73.668 28701.6 3.333 21524.1 113.85 
 FSDT [2] 22207 2.6290 17441 73.674 28689.6 3.334 21518.1 113.91 
 CBT [1] 22206 2.6254 17440 73.670 28688.2 3.329 21517.0 113.91 

 

 
  



 

146 B.M. Shinde & A.S. Sayyad / Mechanics of Advanced Composite Structures 4 (2017) 139-152 

 

Table 3. Non-dimensional displacements and stresses in 0°/90°/0° cross-ply laminated composite beams (MAT 2) 

h/L Theory SSL UDL 

u  w  x  EE

zx  u  w  x  EE

zx  

0.25 Proposed 0.8624 2.700 16.986 1.5561 1.1590 3.367 19.646 1.8346 
 PSDT [3] 0.8653 2.700 16.989 1.5570 1.1617 3.368 19.670 1.8310 
 HSDT [31] 0.8630 2.698 16.944 1.5594 1.1590 3.365 19.615 1.8312 
 ESDT [32] 0.9678 2.687 19.003 1.3320 1.2895 3.366 22.139 1.7557 
 Semi-Analytical [23] --- 2.890 18.819 1.5776 --- 3.605 21.761 2.4880 
 HSDT-N1 [37] --- --- --- --- --- 3.3496 19.6712 --- 
 HSDT-N2 [37] --- --- --- --- --- 3.3496 19.6784 --- 
 HSDT-N3 [37] --- --- --- --- --- 3.3852 20.2936 --- 
 FSDT [2] 0.5136 2.410 10.085 1.7690 0.6636 2.991 12.442 2.7355 
 CBT [1] 0.5136 0.510 10.085 1.7690 0.6636 0.648 12.442 2.7355 
0.1 Proposed 8.9160 0.873 70.264 4.3342 11.703 1.095 85.098 6.0721 
 PSDT [3] 8.9398 0.875 70.212 4.3344 11.733 1.098 85.029 6.0900 
 HSDT [31] 8.9329 0.874 70.158 4.3355 11.724 1.097 84.973 6.0922 
 ESDT [32] 9.2585 0.889 72.716 4.2051 12.714 1.115 87.629 5.9196 
 Semi-Analytical [23] -- 0.933 73.610 4.4390 --- 1.170 89.030 6.1500 
 HSDT-N1 [37] --- --- --- --- --- 1.0966 85.0144 --- 
 HSDT-N2 [37] --- --- --- --- --- 1.0970 85.0504 --- 
 HSDT-N3 [37] --- --- --- --- --- 1.1062 85.6388 --- 
 FSDT [2] 8.0257 0.814 63.033 4.4226 10.368 1.023 77.767 6.8388 
 CBT [1] 8.0257 0.510 63.033 4.4226 10.368 0.648 77.767 6.8388 
0.01 Proposed 8018.81 0.513 6319.2 43.999 10361.9 0.651 7794.8 68.243 
 PSDT [3] 8034.9 0.514 6310.6 44.217 10382.8 0.652 7784.1 68.243 
 HSDT [31] 8034.8 0.514 6310.5 44.217 10382.6 0.652 7784.0 68.244 
 ESDT [32] 8038.3 0.514 6313.3 44.204 10388.0 0.653 7786.8 68.046 
 FSDT [2] 8025.7 0.514 6303.4 44.226 10368.5 0.651 7776.7 68.387 
 CBT [1] 8025.7 0.510 6303.4 44.226 10368.5 0.648 7776.7 68.687 

 
 

Table 4. Non-dimensional displacements and stresses in 0°/core/0° sandwich beams (Face sheet: MAT 2, Core: MAT 3)

h/L Theory SSL UDL 

u  w  x  EE

zx  u  w  x  EE

zx  

0.25 Proposed 1.7471 10.052 34.435 1.377 2.3770 12.455 39.429 2.583 
 PSDT [3] 1.7393 10.034 34.181 1.372 2.3653 12.494 39.161 2.662 
 HSDT [31] 1.7368 10.027 34.132 1.372 2.3616 12.447 39.110 2.655 
 ESDT [32] 1.7618 10.045 34.622 1.371 2.3940 12.473 39.647 2.672 
 FSDT [2] 1.0120 5.2798 19.898 1.410 1.3080 6.5480 24.549 2.181 
 CBT [1] 1.0120 1.0070 19.898 1.410 1.3080 1.2770 24.549 2.181 
 Semi-Analytical [23] --- 11.060 37.552 1.356 --- 13.750 43.488 2.280 
0.1 Proposed 17.706 2.4807 139.55 3.508 23.291 3.0966 168.89 5.305 
 PSDT [3] 17.670 2.4772 138.41 3.509 23.24 3.0923 168.13 5.287 
 HSDT [31] 17.664 2.4763 138.85 3.509 23.231 3.0911 168.08 5.288 
 ESDT [32] 17.731 2.4824 139.38 3.508 23.328 3.0988 168.61 5.286 
 FSDT [2] 15.821 1.6910 124.36 3.526 20.439 2.1210 153.43 5.452 
 CBT [1] 15.821 1.0070 124.36 3.526 20.439 1.2770 153.43 5.452 
 Semi-Analytical [23] --- 2.6680 143.14 3.504 --- 3.3300 172.60 5.240 
0.01 Proposed 15860 1.0233 12498.6 35.20 20494 1.2973 15416.9 54.42 
 PSDT [3] 15839 1.0220 12451.1 35.26 20468 1.2957 15358.4 54.50 
 HSDT [31] 15839 1.0219 12451.1 35.26 20468 1.2957 15358.4 54.35 
 ESDT [32] 15840 1.0220 12451.7 35.26 20469 1.2958 15358.9 54.49 
 FSDT [2] 15820 1.0140 12436.5 35.26 20439 1.2829 15343.3 54.52 
 CBT [1] 15821 1.0072 12436.6 35.26 20439 1.2775 15343.5 54.52 
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Table 5. Non-dimensional displacements and stresses in functionally graded beams under single sinusoidal loading (MAT 4) 

k Theory L/h = 5 L/h = 20 

u  w  x  
zx  u  w  x  

zx  

0 Proposed 0.9150 3.1397 3.8341 0.7230 0.2302 2.8947 15.0719 0.7376 
Li et. al [22] 0.9402 3.1657 3.8020 0.7500 0.2306 2.8962 15.0130 0.7500 
TBT [33] 0.9398 3.1654 3.8020 0.7332 0.2306 2.8962 15.0129 0.7451 
SBT [33] 0.9409 3.1649 3.8053 0.7549 0.2306 2.8962 15.0138 0.7686 
HBT [33] 0.9397 3.1654 3.8017 0.7312 0.2306 2.8962 15.0129 0.7429 
EBT [33] 0.9420 3.1635 3.8083 0.7763 0.2306 2.8961 15.0145 0.7920 
Vo et al. [39] --- 3.1397 3.8005 0.7233 --- 2.8947 15.0125 0.7432 
HSDT2 [36] --- 3.1397 3.8028 0.7235 --- 2.8947 15.0197 0.7443 
HSDT3 [36] -- 3.1397 3.8021 0.7224 -- 2.8947 15.0195 0.7433 
CBT [1] 0.9211 2.8783 3.7500 --- 0.2303 2.8783 15.0000 --- 

1 Proposed 2.1975 6.1338 5.7941 0.7230 0.5517 5.7201 23.2714 0.7376 
Li et. al [22] 2.3045 6.2599 5.8837 0.7500 0.5686 5.8049 23.2054 0.7500 
TBT [33] 2.3038 6.2594 5.8836 0.7332 0.5686 5.8049 23.2053 0.7451 
SBT [33] 2.3058 6.2586 5.8892 0.7549 0.5686 5.8049 23.2067 0.7686 
HBT [33] 2.3036 6.2594 5.8831 0.7312 0.5685 5.8049 23.2052 0.7429 
EBT [33] 2.3075 6.2563 5.8943 0.7763 0.5686 5.8047 23.2080 0.7920 
Vo et al. [39] --- 6.1338 5.8812 0.7233 --- 5.7201 23.2046 0.7432 
HSDT2 [36] --- 6.1334 5.8855 0.7235 --- 5.7197 23.2184 0.7443 
HSDT3 [36] -- 6.1334 5.8843 0.7224 -- 5.7197 23.2181 0.7433 
CBT [1] 2.2722 5.7746 5.7959 --- 0.5680 5.7746 23.1834 --- 

2 Proposed 2.9460 7.8606 6.6179 0.6620 0.7397 7.2805 27.2030 0.6757 
Li et. al [22] 3.1134 8.0602 6.8812 0.6787 0.7691 7.4415 27.0989 0.6787 
TBT [33] 3.1130 8.0677 6.8826 0.6706 0.7691 7.4421 27.0991 0.6824 
SBT [33] 3.1153 8.0683 6.8901 0.6933 0.7692 7.4421 27.1010 0.7069 
HBT [33] 3.1127 8.0675 6.8819 0.6685 0.7691 7.4420 27.0989 0.6802 
EBT [33] 3.1174 8.0667 6.8969 0.7157 0.7692 7.4420 27.1027 0.7315 
Vo et al. [39] --- 7.8606 6.8818 0.6622 --- 7.2805 27.0988 0.6809 
HSDT2 [36] --- 7.8598 6.8871 0.6625 --- 7.2797 27.1158 0.6800 
HSDT3 [36] -- 7.8597 6.8857 0.6613 -- 7.2797 27.1154 0.6790 
CBT [1] 3.0740 7.4003 6.7676 --- 0.7685 7.4003 27.0704 --- 

5 Proposed 3.5050 9.6038 7.9579 0.5838 0.8797 8.6479 31.9586 0.5966 
Li et. al [22] 3.7089 9.7802 8.1030 0.5790 0.9133 8.8151 31.8112 0.5790 
TBT [33] 3.7100 9.8281 8.1106 0.5905 0.9134 8.8182 31.8130 0.6023 
SBT [33] 3.7140 9.8367 8.1222 0.6155 0.9134 8.8188 31.8159 0.6292 
HBT [33] 3.7097 9.8271 8.1095 0.5883 0.9134 8.8181 31.8127 0.5998 
EBT [33] 3.7177 9.8414 8.1329 0.6404 0.9135 8.8191 31.8185 0.6562 
Vo et al. [39] --- 9.6037 8.1140 0.5840 --- 8.6479 31.8137 0.6010 
HSDT2 [36] --- 9.6030 8.1202 0.5843 --- 8.6471 31.8341 0.6019 
HSDT3 [36] -- 9.6025 8.1184 0.5829 -- 8.6471 31.8337 0.6014 
CBT [1] 3.6496 8.7508 7.9428 --- 0.9124 8.7508 31.7711 --- 

10 Proposed 3.6922 10.7578 9.6903 0.6394 0.9267 9.5749 37.9164 0.6534 
Li et. al [22] 3.8860 10.8979 9.7063 0.6436 0.9536 9.6879 38.1372 0.6436 
TBT [33] 3.8864 10.9381 9.7122 0.6467 0.9536 9.6905 38.1385 0.6596 
SBT [33] 3.8913 10.9420 9.7238 0.6708 0.9537 9.6908 38.1414 0.6858 
HBT [33] 3.8859 10.9375 9.7111 0.6445 0.9536 9.6905 38.1383 0.6572 
EBT [33] 3.8957 10.9404 9.7341 0.6944 0.9538 9.6907 38.1440 0.7115 
Vo et al. [39] --- 10.7578 9.7164 0.6396 --- 9.5749 38.1395 0.6583 
HSDT2 [36] --- 10.7573 9.7234 0.6399 --- 9.5742 38.1624 0.6614 
HSDT3 [36] -- 10.7569 9.7215 0.6386 -- 9.5743 38.1636 0.6529 
CBT [1] 3.8097 9.6072 9.5228 --- 0.9524 9.6072 38.0913 --- 
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Table 6. Non-dimensional displacements and stresses in functionally graded beams under uniformly distributed loading (MAT 4) 

k Theory L/h = 5 

u  w  x  
zx  

0 Proposed 0.7086 2.5047 3.1048 0.4769 
PSDT [3] 0.7251 2.5020 3.0916 0.4769 
TSDT [29] 0.7259 2.5016 3.0949 0.4920 
HSDT [29] 0.7247 2.5003 3.0899 0.4739 
ESDT [29] 0.7280 2.4974 3.1039 0.4871 
FSDT [2] 0.7129 2.5023 3.0396 0.3183 
CBT [1] 0.7129 2.2693 3.0396 ---- 

1 Proposed 1.7051 4.8435 5.0392 0.4769 
PSDT [3] 1.7793 4.9458 4.7856 0.5243 
TSDT [29] 1.7806 4.9451 4.7912 0.5331 
HSDT [29] 1.7517 4.9257 4.7165 0.6025 
ESDT [29] 1.7819 4.9432 4.7944 05430 
FSDT [2] 1.7588 4.8807 4.6979 0.5376 
CBT [1] 1.7588 4.5228 4.6979 ---- 

5 Proposed 2.7143 7.5938 6.9216 0.3856 
PSDT [3] 2.8644 7.7723 6.6057 0.5314 
TSDT [29] 2.8671 7.7792 6.6172 0.5144 
HSDT [29] 2.8641 7.7715 6.6047 0.5332 
ESDT [29] 2.8697 7.7830 6.6281 0.5022 
FSDT [2] 2.8250 7.5056 6.4382 0.9942 
CBT [1] 2.8250 6.8994 6.4382 ---- 

10 Proposed 2.8591 8.5088 8.2877 0.4224 
PSDT [3] 2.9989 8.6530 7.9080 0.4226 
TSDT [29] 3.0022 8.6561 7.9195 0.4392 
HSDT [29] 2.9986 8.6527 7.9070 0.4211 
ESDT [29] 3.0054 8.6547 7.9301 0.4558 
FSDT [2] 2.9488 8.3259 7.7189 1.2320 
CBT [1] 2.9488 7.5746 7.7189 ---- 
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Figure 4. Through-thickness variations of zx  in 0°/90° laminat-

ed beams subjected to single sinusoidal and uniformly distribut-
ed loading at L/h = 4. 
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Figure 5. Through-thickness variations of u  in 0°/90°/0° lami-

nated beams subjected to single sinusoidal and uniformly dis-
tributed loading at L/h = 4. 
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Figure 6. Through-thickness variations of x  in 0°/90°/0° lami-

nated beams subjected to single sinusoidal and uniformly dis-
tributed loading at L/h = 4. 
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Figure 7. Through-thickness variations of zx  in 0°/90°/0° lami-

nated beams subjected to single sinusoidal and uniformly dis-
tributed loading at L/h = 4. 
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Figure 8. Through-thickness variations of u  in sandwich beams 

subjected to single sinusoidal and uniformly distributed loading 
at L/h = 4. 
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Figure 9. Through-thickness variations of x  in sandwich 

beams subjected to single sinusoidal and uniformly distributed 
loading at L/h = 4. 
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Figure 10. Through-thickness variations of zx  in sandwich 

beams subjected to single sinusoidal and uniformly distributed 
loading at L/h = 4. 
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Figure 11. Through-thickness variations of u  in functionally 

graded beams subjected to single sinusoidal loading at L/h = 4. 
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Figure 12. Through-thickness variations of x  in functionally 

graded beams subjected to single sinusoidal loading at L/h = 4. 
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Figure 13. Through-thickness variations of zx  in functionally 

graded beams subjected to single sinusoidal loading at L/h = 4. 

 

5. Concluding Remarks 
 In this research, a quasi-3D polynomial shear 
and normal deformation theory is applied for the 
bending analyses of composite beams made of fi-
brous composite materials and FGMs. The proposed 
theory considers the effects of transverse shear and 
normal deformations. It also satisfies the traction-
free conditions on the top and bottom surfaces of 
beam without the application of a shear correction 
factor. Governing equations are obtained using the 
virtual work principle, and displacements and 
stresses are determined using Navier’s solution. 
Numerical results are presented for isotropic, lami-
nated composite, sandwich, and functionally graded 
beams. On the basis of the findings, we can conclude 
that the proposed theory derives excellent results 
on displacements and stresses for the examined 
beams. Shear stress continuity is satisfied by equa-

tions of equilibrium. The transverse displacement 
obtained using the proposed theory for functionally 
graded beams increases with increasing power-law 
index given the fact that an increase in the index 
improves the flexibility of functionally graded 
beams. 
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